# Copyright (c) OpenMMLab. All rights reserved. import warnings from collections.abc import Sequence import mmcv import numpy as np from mmcv.parallel import DataContainer as DC from mmcv.utils import build_from_cfg from numpy import random from torchvision.transforms import functional as F from ..builder import PIPELINES try: import albumentations except ImportError: albumentations = None @PIPELINES.register_module() class ToTensor: """Transform image to Tensor. Required key: 'img'. Modifies key: 'img'. Args: results (dict): contain all information about training. """ def __call__(self, results): if isinstance(results['img'], (list, tuple)): results['img'] = [F.to_tensor(img) for img in results['img']] else: results['img'] = F.to_tensor(results['img']) return results @PIPELINES.register_module() class NormalizeTensor: """Normalize the Tensor image (CxHxW), with mean and std. Required key: 'img'. Modifies key: 'img'. Args: mean (list[float]): Mean values of 3 channels. std (list[float]): Std values of 3 channels. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, results): if isinstance(results['img'], (list, tuple)): results['img'] = [ F.normalize(img, mean=self.mean, std=self.std) for img in results['img'] ] else: results['img'] = F.normalize( results['img'], mean=self.mean, std=self.std) return results @PIPELINES.register_module() class Compose: """Compose a data pipeline with a sequence of transforms. Args: transforms (list[dict | callable]): Either config dicts of transforms or transform objects. """ def __init__(self, transforms): assert isinstance(transforms, Sequence) self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict, but got' f' {type(transform)}') def __call__(self, data): """Call function to apply transforms sequentially. Args: data (dict): A result dict contains the data to transform. Returns: dict: Transformed data. """ for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): """Compute the string representation.""" format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += f'\n {t}' format_string += '\n)' return format_string @PIPELINES.register_module() class Collect: """Collect data from the loader relevant to the specific task. This keeps the items in `keys` as it is, and collect items in `meta_keys` into a meta item called `meta_name`.This is usually the last stage of the data loader pipeline. For example, when keys='imgs', meta_keys=('filename', 'label', 'original_shape'), meta_name='img_metas', the results will be a dict with keys 'imgs' and 'img_metas', where 'img_metas' is a DataContainer of another dict with keys 'filename', 'label', 'original_shape'. Args: keys (Sequence[str|tuple]): Required keys to be collected. If a tuple (key, key_new) is given as an element, the item retrieved by key will be renamed as key_new in collected data. meta_name (str): The name of the key that contains meta information. This key is always populated. Default: "img_metas". meta_keys (Sequence[str|tuple]): Keys that are collected under meta_name. The contents of the `meta_name` dictionary depends on `meta_keys`. """ def __init__(self, keys, meta_keys, meta_name='img_metas'): self.keys = keys self.meta_keys = meta_keys self.meta_name = meta_name def __call__(self, results): """Performs the Collect formatting. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ if 'ann_info' in results: results.update(results['ann_info']) data = {} for key in self.keys: if isinstance(key, tuple): assert len(key) == 2 key_src, key_tgt = key[:2] else: key_src = key_tgt = key data[key_tgt] = results[key_src] meta = {} if len(self.meta_keys) != 0: for key in self.meta_keys: if isinstance(key, tuple): assert len(key) == 2 key_src, key_tgt = key[:2] else: key_src = key_tgt = key meta[key_tgt] = results[key_src] if 'bbox_id' in results: meta['bbox_id'] = results['bbox_id'] data[self.meta_name] = DC(meta, cpu_only=True) return data def __repr__(self): """Compute the string representation.""" return (f'{self.__class__.__name__}(' f'keys={self.keys}, meta_keys={self.meta_keys})') @PIPELINES.register_module() class Albumentation: """Albumentation augmentation (pixel-level transforms only). Adds custom pixel-level transformations from Albumentations library. Please visit `https://albumentations.readthedocs.io` to get more information. Note: we only support pixel-level transforms. Please visit `https://github.com/albumentations-team/` `albumentations#pixel-level-transforms` to get more information about pixel-level transforms. An example of ``transforms`` is as followed: .. code-block:: python [ dict( type='RandomBrightnessContrast', brightness_limit=[0.1, 0.3], contrast_limit=[0.1, 0.3], p=0.2), dict(type='ChannelShuffle', p=0.1), dict( type='OneOf', transforms=[ dict(type='Blur', blur_limit=3, p=1.0), dict(type='MedianBlur', blur_limit=3, p=1.0) ], p=0.1), ] Args: transforms (list[dict]): A list of Albumentation transformations keymap (dict): Contains {'input key':'albumentation-style key'}, e.g., {'img': 'image'}. """ def __init__(self, transforms, keymap=None): if albumentations is None: raise RuntimeError('albumentations is not installed') self.transforms = transforms self.filter_lost_elements = False self.aug = albumentations.Compose( [self.albu_builder(t) for t in self.transforms]) if not keymap: self.keymap_to_albu = { 'img': 'image', } else: self.keymap_to_albu = keymap self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()} def albu_builder(self, cfg): """Import a module from albumentations. It resembles some of :func:`build_from_cfg` logic. Args: cfg (dict): Config dict. It should at least contain the key "type". Returns: obj: The constructed object. """ assert isinstance(cfg, dict) and 'type' in cfg args = cfg.copy() obj_type = args.pop('type') if mmcv.is_str(obj_type): if albumentations is None: raise RuntimeError('albumentations is not installed') if not hasattr(albumentations.augmentations.transforms, obj_type): warnings.warn('{obj_type} is not pixel-level transformations. ' 'Please use with caution.') obj_cls = getattr(albumentations, obj_type) else: raise TypeError(f'type must be a str, but got {type(obj_type)}') if 'transforms' in args: args['transforms'] = [ self.albu_builder(transform) for transform in args['transforms'] ] return obj_cls(**args) @staticmethod def mapper(d, keymap): """Dictionary mapper. Renames keys according to keymap provided. Args: d (dict): old dict keymap (dict): {'old_key':'new_key'} Returns: dict: new dict. """ updated_dict = {keymap.get(k, k): v for k, v in d.items()} return updated_dict def __call__(self, results): # dict to albumentations format results = self.mapper(results, self.keymap_to_albu) results = self.aug(**results) # back to the original format results = self.mapper(results, self.keymap_back) return results def __repr__(self): repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' return repr_str @PIPELINES.register_module() class PhotometricDistortion: """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) 8. randomly swap channels Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def convert(self, img, alpha=1, beta=0): """Multiple with alpha and add beta with clip.""" img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8) def brightness(self, img): """Brightness distortion.""" if random.randint(2): return self.convert( img, beta=random.uniform(-self.brightness_delta, self.brightness_delta)) return img def contrast(self, img): """Contrast distortion.""" if random.randint(2): return self.convert( img, alpha=random.uniform(self.contrast_lower, self.contrast_upper)) return img def saturation(self, img): # Apply saturation distortion to hsv-formatted img img[:, :, 1] = self.convert( img[:, :, 1], alpha=random.uniform(self.saturation_lower, self.saturation_upper)) return img def hue(self, img): # Apply hue distortion to hsv-formatted img img[:, :, 0] = (img[:, :, 0].astype(int) + random.randint(-self.hue_delta, self.hue_delta)) % 180 return img def swap_channels(self, img): # Apply channel swap if random.randint(2): img = img[..., random.permutation(3)] return img def __call__(self, results): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] # random brightness img = self.brightness(img) # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: img = self.contrast(img) hsv_mode = random.randint(4) if hsv_mode: # random saturation/hue distortion img = mmcv.bgr2hsv(img) if hsv_mode == 1 or hsv_mode == 3: img = self.saturation(img) if hsv_mode == 2 or hsv_mode == 3: img = self.hue(img) img = mmcv.hsv2bgr(img) # random contrast if mode == 0: img = self.contrast(img) # randomly swap channels self.swap_channels(img) results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(brightness_delta={self.brightness_delta}, ' f'contrast_range=({self.contrast_lower}, ' f'{self.contrast_upper}), ' f'saturation_range=({self.saturation_lower}, ' f'{self.saturation_upper}), ' f'hue_delta={self.hue_delta})') return repr_str @PIPELINES.register_module() class MultiItemProcess: """Process each item and merge multi-item results to lists. Args: pipeline (dict): Dictionary to construct pipeline for a single item. """ def __init__(self, pipeline): self.pipeline = Compose(pipeline) def __call__(self, results): results_ = {} for idx, result in results.items(): single_result = self.pipeline(result) for k, v in single_result.items(): if k in results_: results_[k].append(v) else: results_[k] = [v] return results_ @PIPELINES.register_module() class DiscardDuplicatedItems: def __init__(self, keys_list): """Discard duplicated single-item results. Args: keys_list (list): List of keys that need to be deduplicate. """ self.keys_list = keys_list def __call__(self, results): for k, v in results.items(): if k in self.keys_list: assert isinstance(v, Sequence) results[k] = v[0] return results @PIPELINES.register_module() class MultitaskGatherTarget: """Gather the targets for multitask heads. Args: pipeline_list (list[list]): List of pipelines for all heads. pipeline_indices (list[int]): Pipeline index of each head. """ def __init__(self, pipeline_list, pipeline_indices=None, keys=('target', 'target_weight')): self.keys = keys self.pipelines = [] for pipeline in pipeline_list: self.pipelines.append(Compose(pipeline)) if pipeline_indices is None: self.pipeline_indices = list(range(len(pipeline_list))) else: self.pipeline_indices = pipeline_indices def __call__(self, results): # generate target and target weights using all pipelines pipeline_outputs = [] for pipeline in self.pipelines: pipeline_output = pipeline(results) pipeline_outputs.append(pipeline_output.copy()) for key in self.keys: result_key = [] for ind in self.pipeline_indices: result_key.append(pipeline_outputs[ind].get(key, None)) results[key] = result_key return results @PIPELINES.register_module() class RenameKeys: """Rename the keys. Args: key_pairs (Sequence[tuple]): Required keys to be renamed. If a tuple (key_src, key_tgt) is given as an element, the item retrieved by key_src will be renamed as key_tgt. """ def __init__(self, key_pairs): self.key_pairs = key_pairs def __call__(self, results): """Rename keys.""" for key_pair in self.key_pairs: assert len(key_pair) == 2 key_src, key_tgt = key_pair results[key_tgt] = results.pop(key_src) return results