# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np from ..builder import PIPELINES @PIPELINES.register_module() class LoadImageFromFile: """Loading image(s) from file. Required key: "image_file". Added key: "img". Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): Flags specifying the color type of a loaded image, candidates are 'color', 'grayscale' and 'unchanged'. channel_order (str): Order of channel, candidates are 'bgr' and 'rgb'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. """ def __init__(self, to_float32=False, color_type='color', channel_order='rgb', file_client_args=dict(backend='disk')): self.to_float32 = to_float32 self.color_type = color_type self.channel_order = channel_order self.file_client_args = file_client_args.copy() self.file_client = None def _read_image(self, path): img_bytes = self.file_client.get(path) img = mmcv.imfrombytes( img_bytes, flag=self.color_type, channel_order=self.channel_order) if img is None: raise ValueError(f'Fail to read {path}') if self.to_float32: img = img.astype(np.float32) return img def __call__(self, results): """Loading image(s) from file.""" if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) image_file = results.get('image_file', None) if isinstance(image_file, (list, tuple)): # Load images from a list of paths results['img'] = [self._read_image(path) for path in image_file] elif image_file is not None: # Load single image from path results['img'] = self._read_image(image_file) else: if 'img' not in results: # If `image_file`` is not in results, check the `img` exists # and format the image. This for compatibility when the image # is manually set outside the pipeline. raise KeyError('Either `image_file` or `img` should exist in ' 'results.') assert isinstance(results['img'], np.ndarray) if self.color_type == 'color' and self.channel_order == 'rgb': # The original results['img'] is assumed to be image(s) in BGR # order, so we convert the color according to the arguments. if results['img'].ndim == 3: results['img'] = mmcv.bgr2rgb(results['img']) elif results['img'].ndim == 4: results['img'] = np.concatenate( [mmcv.bgr2rgb(img) for img in results['img']], axis=0) else: raise ValueError('results["img"] has invalid shape ' f'{results["img"].shape}') results['image_file'] = None return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'to_float32={self.to_float32}, ' f"color_type='{self.color_type}', " f'file_client_args={self.file_client_args})') return repr_str