# Copyright (c) OpenMMLab. All rights reserved. import cv2 import numpy as np from mmpose.core.post_processing import (get_affine_transform, get_warp_matrix, warp_affine_joints) from mmpose.datasets.builder import PIPELINES from .shared_transform import Compose def _ceil_to_multiples_of(x, base=64): """Transform x to the integral multiple of the base.""" return int(np.ceil(x / base)) * base def _get_multi_scale_size(image, input_size, current_scale, min_scale, use_udp=False): """Get the size for multi-scale training. Args: image: Input image. input_size (np.ndarray[2]): Size (w, h) of the image input. current_scale (float): Scale factor. min_scale (float): Minimal scale. use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Returns: tuple: A tuple containing multi-scale sizes. - (w_resized, h_resized) (tuple(int)): resized width/height - center (np.ndarray)image center - scale (np.ndarray): scales wrt width/height """ assert len(input_size) == 2 h, w, _ = image.shape # calculate the size for min_scale min_input_w = _ceil_to_multiples_of(min_scale * input_size[0], 64) min_input_h = _ceil_to_multiples_of(min_scale * input_size[1], 64) if w < h: w_resized = int(min_input_w * current_scale / min_scale) h_resized = int( _ceil_to_multiples_of(min_input_w / w * h, 64) * current_scale / min_scale) if use_udp: scale_w = w - 1.0 scale_h = (h_resized - 1.0) / (w_resized - 1.0) * (w - 1.0) else: scale_w = w / 200.0 scale_h = h_resized / w_resized * w / 200.0 else: h_resized = int(min_input_h * current_scale / min_scale) w_resized = int( _ceil_to_multiples_of(min_input_h / h * w, 64) * current_scale / min_scale) if use_udp: scale_h = h - 1.0 scale_w = (w_resized - 1.0) / (h_resized - 1.0) * (h - 1.0) else: scale_h = h / 200.0 scale_w = w_resized / h_resized * h / 200.0 if use_udp: center = (scale_w / 2.0, scale_h / 2.0) else: center = np.array([round(w / 2.0), round(h / 2.0)]) return (w_resized, h_resized), center, np.array([scale_w, scale_h]) def _resize_align_multi_scale(image, input_size, current_scale, min_scale): """Resize the images for multi-scale training. Args: image: Input image input_size (np.ndarray[2]): Size (w, h) of the image input current_scale (float): Current scale min_scale (float): Minimal scale Returns: tuple: A tuple containing image info. - image_resized (np.ndarray): resized image - center (np.ndarray): center of image - scale (np.ndarray): scale """ assert len(input_size) == 2 size_resized, center, scale = _get_multi_scale_size( image, input_size, current_scale, min_scale) trans = get_affine_transform(center, scale, 0, size_resized) image_resized = cv2.warpAffine(image, trans, size_resized) return image_resized, center, scale def _resize_align_multi_scale_udp(image, input_size, current_scale, min_scale): """Resize the images for multi-scale training. Args: image: Input image input_size (np.ndarray[2]): Size (w, h) of the image input current_scale (float): Current scale min_scale (float): Minimal scale Returns: tuple: A tuple containing image info. - image_resized (np.ndarray): resized image - center (np.ndarray): center of image - scale (np.ndarray): scale """ assert len(input_size) == 2 size_resized, _, _ = _get_multi_scale_size(image, input_size, current_scale, min_scale, True) _, center, scale = _get_multi_scale_size(image, input_size, min_scale, min_scale, True) trans = get_warp_matrix( theta=0, size_input=np.array(scale, dtype=np.float32), size_dst=np.array(size_resized, dtype=np.float32) - 1.0, size_target=np.array(scale, dtype=np.float32)) image_resized = cv2.warpAffine( image.copy(), trans, size_resized, flags=cv2.INTER_LINEAR) return image_resized, center, scale class HeatmapGenerator: """Generate heatmaps for bottom-up models. Args: num_joints (int): Number of keypoints output_size (np.ndarray): Size (w, h) of feature map sigma (int): Sigma of the heatmaps. use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, output_size, num_joints, sigma=-1, use_udp=False): if not isinstance(output_size, np.ndarray): output_size = np.array(output_size) if output_size.size > 1: assert len(output_size) == 2 self.output_size = output_size else: self.output_size = np.array([output_size, output_size], dtype=np.int) self.num_joints = num_joints if sigma < 0: sigma = self.output_size.prod()**0.5 / 64 self.sigma = sigma size = 6 * sigma + 3 self.use_udp = use_udp if use_udp: self.x = np.arange(0, size, 1, np.float32) self.y = self.x[:, None] else: x = np.arange(0, size, 1, np.float32) y = x[:, None] x0, y0 = 3 * sigma + 1, 3 * sigma + 1 self.g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) def __call__(self, joints): """Generate heatmaps.""" hms = np.zeros( (self.num_joints, self.output_size[1], self.output_size[0]), dtype=np.float32) sigma = self.sigma for p in joints: for idx, pt in enumerate(p): if pt[2] > 0: x, y = int(pt[0]), int(pt[1]) if x < 0 or y < 0 or \ x >= self.output_size[0] or y >= self.output_size[1]: continue if self.use_udp: x0 = 3 * sigma + 1 + pt[0] - x y0 = 3 * sigma + 1 + pt[1] - y g = np.exp(-((self.x - x0)**2 + (self.y - y0)**2) / (2 * sigma**2)) else: g = self.g ul = int(np.round(x - 3 * sigma - 1)), int(np.round(y - 3 * sigma - 1)) br = int(np.round(x + 3 * sigma + 2)), int(np.round(y + 3 * sigma + 2)) c, d = max(0, -ul[0]), min(br[0], self.output_size[0]) - ul[0] a, b = max(0, -ul[1]), min(br[1], self.output_size[1]) - ul[1] cc, dd = max(0, ul[0]), min(br[0], self.output_size[0]) aa, bb = max(0, ul[1]), min(br[1], self.output_size[1]) hms[idx, aa:bb, cc:dd] = np.maximum(hms[idx, aa:bb, cc:dd], g[a:b, c:d]) return hms class JointsEncoder: """Encodes the visible joints into (coordinates, score); The coordinate of one joint and its score are of `int` type. (idx * output_size**2 + y * output_size + x, 1) or (0, 0). Args: max_num_people(int): Max number of people in an image num_joints(int): Number of keypoints output_size(np.ndarray): Size (w, h) of feature map tag_per_joint(bool): Option to use one tag map per joint. """ def __init__(self, max_num_people, num_joints, output_size, tag_per_joint): self.max_num_people = max_num_people self.num_joints = num_joints if not isinstance(output_size, np.ndarray): output_size = np.array(output_size) if output_size.size > 1: assert len(output_size) == 2 self.output_size = output_size else: self.output_size = np.array([output_size, output_size], dtype=np.int) self.tag_per_joint = tag_per_joint def __call__(self, joints): """ Note: - number of people in image: N - number of keypoints: K - max number of people in an image: M Args: joints (np.ndarray[N,K,3]) Returns: visible_kpts (np.ndarray[M,K,2]). """ visible_kpts = np.zeros((self.max_num_people, self.num_joints, 2), dtype=np.float32) for i in range(len(joints)): tot = 0 for idx, pt in enumerate(joints[i]): x, y = int(pt[0]), int(pt[1]) if (pt[2] > 0 and 0 <= y < self.output_size[1] and 0 <= x < self.output_size[0]): if self.tag_per_joint: visible_kpts[i][tot] = \ (idx * self.output_size.prod() + y * self.output_size[0] + x, 1) else: visible_kpts[i][tot] = (y * self.output_size[0] + x, 1) tot += 1 return visible_kpts class PAFGenerator: """Generate part affinity fields. Args: output_size (np.ndarray): Size (w, h) of feature map. limb_width (int): Limb width of part affinity fields. skeleton (list[list]): connections of joints. """ def __init__(self, output_size, limb_width, skeleton): if not isinstance(output_size, np.ndarray): output_size = np.array(output_size) if output_size.size > 1: assert len(output_size) == 2 self.output_size = output_size else: self.output_size = np.array([output_size, output_size], dtype=np.int) self.limb_width = limb_width self.skeleton = skeleton def _accumulate_paf_map_(self, pafs, src, dst, count): """Accumulate part affinity fields between two given joints. Args: pafs (np.ndarray[2,H,W]): paf maps (2 dimensions:x axis and y axis) for a certain limb connection. This argument will be modified inplace. src (np.ndarray[2,]): coordinates of the source joint. dst (np.ndarray[2,]): coordinates of the destination joint. count (np.ndarray[H,W]): count map that preserves the number of non-zero vectors at each point. This argument will be modified inplace. """ limb_vec = dst - src norm = np.linalg.norm(limb_vec) if norm == 0: unit_limb_vec = np.zeros(2) else: unit_limb_vec = limb_vec / norm min_x = max(np.floor(min(src[0], dst[0]) - self.limb_width), 0) max_x = min( np.ceil(max(src[0], dst[0]) + self.limb_width), self.output_size[0] - 1) min_y = max(np.floor(min(src[1], dst[1]) - self.limb_width), 0) max_y = min( np.ceil(max(src[1], dst[1]) + self.limb_width), self.output_size[1] - 1) range_x = list(range(int(min_x), int(max_x + 1), 1)) range_y = list(range(int(min_y), int(max_y + 1), 1)) mask = np.zeros_like(count, dtype=bool) if len(range_x) > 0 and len(range_y) > 0: xx, yy = np.meshgrid(range_x, range_y) delta_x = xx - src[0] delta_y = yy - src[1] dist = np.abs(delta_x * unit_limb_vec[1] - delta_y * unit_limb_vec[0]) mask_local = (dist < self.limb_width) mask[yy, xx] = mask_local pafs[0, mask] += unit_limb_vec[0] pafs[1, mask] += unit_limb_vec[1] count += mask return pafs, count def __call__(self, joints): """Generate the target part affinity fields.""" pafs = np.zeros( (len(self.skeleton) * 2, self.output_size[1], self.output_size[0]), dtype=np.float32) for idx, sk in enumerate(self.skeleton): count = np.zeros((self.output_size[1], self.output_size[0]), dtype=np.float32) for p in joints: src = p[sk[0]] dst = p[sk[1]] if src[2] > 0 and dst[2] > 0: self._accumulate_paf_map_(pafs[2 * idx:2 * idx + 2], src[:2], dst[:2], count) pafs[2 * idx:2 * idx + 2] /= np.maximum(count, 1) return pafs @PIPELINES.register_module() class BottomUpRandomFlip: """Data augmentation with random image flip for bottom-up. Args: flip_prob (float): Probability of flip. """ def __init__(self, flip_prob=0.5): self.flip_prob = flip_prob def __call__(self, results): """Perform data augmentation with random image flip.""" image, mask, joints = results['img'], results['mask'], results[ 'joints'] self.flip_index = results['ann_info']['flip_index'] self.output_size = results['ann_info']['heatmap_size'] assert isinstance(mask, list) assert isinstance(joints, list) assert len(mask) == len(joints) assert len(mask) == len(self.output_size) if np.random.random() < self.flip_prob: image = image[:, ::-1].copy() - np.zeros_like(image) for i, _output_size in enumerate(self.output_size): if not isinstance(_output_size, np.ndarray): _output_size = np.array(_output_size) if _output_size.size > 1: assert len(_output_size) == 2 else: _output_size = np.array([_output_size, _output_size], dtype=np.int) mask[i] = mask[i][:, ::-1].copy() joints[i] = joints[i][:, self.flip_index] joints[i][:, :, 0] = _output_size[0] - joints[i][:, :, 0] - 1 results['img'], results['mask'], results[ 'joints'] = image, mask, joints return results @PIPELINES.register_module() class BottomUpRandomAffine: """Data augmentation with random scaling & rotating. Args: rot_factor (int): Rotating to [-rotation_factor, rotation_factor] scale_factor (float): Scaling to [1-scale_factor, 1+scale_factor] scale_type: wrt ``long`` or ``short`` length of the image. trans_factor: Translation factor. use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, rot_factor, scale_factor, scale_type, trans_factor, use_udp=False): self.max_rotation = rot_factor self.min_scale = scale_factor[0] self.max_scale = scale_factor[1] self.scale_type = scale_type self.trans_factor = trans_factor self.use_udp = use_udp def _get_scale(self, image_size, resized_size): w, h = image_size w_resized, h_resized = resized_size if w / w_resized < h / h_resized: if self.scale_type == 'long': w_pad = h / h_resized * w_resized h_pad = h elif self.scale_type == 'short': w_pad = w h_pad = w / w_resized * h_resized else: raise ValueError(f'Unknown scale type: {self.scale_type}') else: if self.scale_type == 'long': w_pad = w h_pad = w / w_resized * h_resized elif self.scale_type == 'short': w_pad = h / h_resized * w_resized h_pad = h else: raise ValueError(f'Unknown scale type: {self.scale_type}') scale = np.array([w_pad, h_pad], dtype=np.float32) return scale def __call__(self, results): """Perform data augmentation with random scaling & rotating.""" image, mask, joints = results['img'], results['mask'], results[ 'joints'] self.input_size = results['ann_info']['image_size'] if not isinstance(self.input_size, np.ndarray): self.input_size = np.array(self.input_size) if self.input_size.size > 1: assert len(self.input_size) == 2 else: self.input_size = [self.input_size, self.input_size] self.output_size = results['ann_info']['heatmap_size'] assert isinstance(mask, list) assert isinstance(joints, list) assert len(mask) == len(joints) assert len(mask) == len(self.output_size), (len(mask), len(self.output_size), self.output_size) height, width = image.shape[:2] if self.use_udp: center = np.array(((width - 1.0) / 2, (height - 1.0) / 2)) else: center = np.array((width / 2, height / 2)) img_scale = np.array([width, height], dtype=np.float32) aug_scale = np.random.random() * (self.max_scale - self.min_scale) \ + self.min_scale img_scale *= aug_scale aug_rot = (np.random.random() * 2 - 1) * self.max_rotation if self.trans_factor > 0: dx = np.random.randint(-self.trans_factor * img_scale[0] / 200.0, self.trans_factor * img_scale[0] / 200.0) dy = np.random.randint(-self.trans_factor * img_scale[1] / 200.0, self.trans_factor * img_scale[1] / 200.0) center[0] += dx center[1] += dy if self.use_udp: for i, _output_size in enumerate(self.output_size): if not isinstance(_output_size, np.ndarray): _output_size = np.array(_output_size) if _output_size.size > 1: assert len(_output_size) == 2 else: _output_size = [_output_size, _output_size] scale = self._get_scale(img_scale, _output_size) trans = get_warp_matrix( theta=aug_rot, size_input=center * 2.0, size_dst=np.array( (_output_size[0], _output_size[1]), dtype=np.float32) - 1.0, size_target=scale) mask[i] = cv2.warpAffine( (mask[i] * 255).astype(np.uint8), trans, (int(_output_size[0]), int(_output_size[1])), flags=cv2.INTER_LINEAR) / 255 mask[i] = (mask[i] > 0.5).astype(np.float32) joints[i][:, :, 0:2] = \ warp_affine_joints(joints[i][:, :, 0:2].copy(), trans) if results['ann_info']['scale_aware_sigma']: joints[i][:, :, 3] = joints[i][:, :, 3] / aug_scale scale = self._get_scale(img_scale, self.input_size) mat_input = get_warp_matrix( theta=aug_rot, size_input=center * 2.0, size_dst=np.array((self.input_size[0], self.input_size[1]), dtype=np.float32) - 1.0, size_target=scale) image = cv2.warpAffine( image, mat_input, (int(self.input_size[0]), int(self.input_size[1])), flags=cv2.INTER_LINEAR) else: for i, _output_size in enumerate(self.output_size): if not isinstance(_output_size, np.ndarray): _output_size = np.array(_output_size) if _output_size.size > 1: assert len(_output_size) == 2 else: _output_size = [_output_size, _output_size] scale = self._get_scale(img_scale, _output_size) mat_output = get_affine_transform( center=center, scale=scale / 200.0, rot=aug_rot, output_size=_output_size) mask[i] = cv2.warpAffine( (mask[i] * 255).astype(np.uint8), mat_output, (int(_output_size[0]), int(_output_size[1]))) / 255 mask[i] = (mask[i] > 0.5).astype(np.float32) joints[i][:, :, 0:2] = \ warp_affine_joints(joints[i][:, :, 0:2], mat_output) if results['ann_info']['scale_aware_sigma']: joints[i][:, :, 3] = joints[i][:, :, 3] / aug_scale scale = self._get_scale(img_scale, self.input_size) mat_input = get_affine_transform( center=center, scale=scale / 200.0, rot=aug_rot, output_size=self.input_size) image = cv2.warpAffine(image, mat_input, (int( self.input_size[0]), int(self.input_size[1]))) results['img'], results['mask'], results[ 'joints'] = image, mask, joints return results @PIPELINES.register_module() class BottomUpGenerateHeatmapTarget: """Generate multi-scale heatmap target for bottom-up. Args: sigma (int): Sigma of heatmap Gaussian max_num_people (int): Maximum number of people in an image use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, sigma, use_udp=False): self.sigma = sigma self.use_udp = use_udp def _generate(self, num_joints, heatmap_size): """Get heatmap generator.""" heatmap_generator = [ HeatmapGenerator(output_size, num_joints, self.sigma, self.use_udp) for output_size in heatmap_size ] return heatmap_generator def __call__(self, results): """Generate multi-scale heatmap target for bottom-up.""" heatmap_generator = \ self._generate(results['ann_info']['num_joints'], results['ann_info']['heatmap_size']) target_list = list() joints_list = results['joints'] for scale_id in range(results['ann_info']['num_scales']): heatmaps = heatmap_generator[scale_id](joints_list[scale_id]) target_list.append(heatmaps.astype(np.float32)) results['target'] = target_list return results @PIPELINES.register_module() class BottomUpGenerateTarget: """Generate multi-scale heatmap target for associate embedding. Args: sigma (int): Sigma of heatmap Gaussian max_num_people (int): Maximum number of people in an image use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, sigma, max_num_people, use_udp=False): self.sigma = sigma self.max_num_people = max_num_people self.use_udp = use_udp def _generate(self, num_joints, heatmap_size): """Get heatmap generator and joint encoder.""" heatmap_generator = [ HeatmapGenerator(output_size, num_joints, self.sigma, self.use_udp) for output_size in heatmap_size ] joints_encoder = [ JointsEncoder(self.max_num_people, num_joints, output_size, True) for output_size in heatmap_size ] return heatmap_generator, joints_encoder def __call__(self, results): """Generate multi-scale heatmap target for bottom-up.""" heatmap_generator, joints_encoder = \ self._generate(results['ann_info']['num_joints'], results['ann_info']['heatmap_size']) target_list = list() mask_list, joints_list = results['mask'], results['joints'] for scale_id in range(results['ann_info']['num_scales']): target_t = heatmap_generator[scale_id](joints_list[scale_id]) joints_t = joints_encoder[scale_id](joints_list[scale_id]) target_list.append(target_t.astype(np.float32)) mask_list[scale_id] = mask_list[scale_id].astype(np.float32) joints_list[scale_id] = joints_t.astype(np.int32) results['masks'], results['joints'] = mask_list, joints_list results['targets'] = target_list return results @PIPELINES.register_module() class BottomUpGeneratePAFTarget: """Generate multi-scale heatmaps and part affinity fields (PAF) target for bottom-up. Paper ref: Cao et al. Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields (CVPR 2017). Args: limb_width (int): Limb width of part affinity fields """ def __init__(self, limb_width, skeleton=None): self.limb_width = limb_width self.skeleton = skeleton def _generate(self, heatmap_size, skeleton): """Get PAF generator.""" paf_generator = [ PAFGenerator(output_size, self.limb_width, skeleton) for output_size in heatmap_size ] return paf_generator def __call__(self, results): """Generate multi-scale part affinity fields for bottom-up.""" if self.skeleton is None: assert results['ann_info']['skeleton'] is not None self.skeleton = results['ann_info']['skeleton'] paf_generator = \ self._generate(results['ann_info']['heatmap_size'], self.skeleton) target_list = list() joints_list = results['joints'] for scale_id in range(results['ann_info']['num_scales']): pafs = paf_generator[scale_id](joints_list[scale_id]) target_list.append(pafs.astype(np.float32)) results['target'] = target_list return results @PIPELINES.register_module() class BottomUpGetImgSize: """Get multi-scale image sizes for bottom-up, including base_size and test_scale_factor. Keep the ratio and the image is resized to `results['ann_info']['image_size']×current_scale`. Args: test_scale_factor (List[float]): Multi scale current_scale (int): default 1 use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, test_scale_factor, current_scale=1, use_udp=False): self.test_scale_factor = test_scale_factor self.min_scale = min(test_scale_factor) self.current_scale = current_scale self.use_udp = use_udp def __call__(self, results): """Get multi-scale image sizes for bottom-up.""" input_size = results['ann_info']['image_size'] if not isinstance(input_size, np.ndarray): input_size = np.array(input_size) if input_size.size > 1: assert len(input_size) == 2 else: input_size = np.array([input_size, input_size], dtype=np.int) img = results['img'] h, w, _ = img.shape # calculate the size for min_scale min_input_w = _ceil_to_multiples_of(self.min_scale * input_size[0], 64) min_input_h = _ceil_to_multiples_of(self.min_scale * input_size[1], 64) if w < h: w_resized = int(min_input_w * self.current_scale / self.min_scale) h_resized = int( _ceil_to_multiples_of(min_input_w / w * h, 64) * self.current_scale / self.min_scale) if self.use_udp: scale_w = w - 1.0 scale_h = (h_resized - 1.0) / (w_resized - 1.0) * (w - 1.0) else: scale_w = w / 200.0 scale_h = h_resized / w_resized * w / 200.0 else: h_resized = int(min_input_h * self.current_scale / self.min_scale) w_resized = int( _ceil_to_multiples_of(min_input_h / h * w, 64) * self.current_scale / self.min_scale) if self.use_udp: scale_h = h - 1.0 scale_w = (w_resized - 1.0) / (h_resized - 1.0) * (h - 1.0) else: scale_h = h / 200.0 scale_w = w_resized / h_resized * h / 200.0 if self.use_udp: center = (scale_w / 2.0, scale_h / 2.0) else: center = np.array([round(w / 2.0), round(h / 2.0)]) results['ann_info']['test_scale_factor'] = self.test_scale_factor results['ann_info']['base_size'] = (w_resized, h_resized) results['ann_info']['center'] = center results['ann_info']['scale'] = np.array([scale_w, scale_h]) return results @PIPELINES.register_module() class BottomUpResizeAlign: """Resize multi-scale size and align transform for bottom-up. Args: transforms (List): ToTensor & Normalize use_udp (bool): To use unbiased data processing. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). """ def __init__(self, transforms, use_udp=False): self.transforms = Compose(transforms) if use_udp: self._resize_align_multi_scale = _resize_align_multi_scale_udp else: self._resize_align_multi_scale = _resize_align_multi_scale def __call__(self, results): """Resize multi-scale size and align transform for bottom-up.""" input_size = results['ann_info']['image_size'] if not isinstance(input_size, np.ndarray): input_size = np.array(input_size) if input_size.size > 1: assert len(input_size) == 2 else: input_size = np.array([input_size, input_size], dtype=np.int) test_scale_factor = results['ann_info']['test_scale_factor'] aug_data = [] for _, s in enumerate(sorted(test_scale_factor, reverse=True)): _results = results.copy() image_resized, _, _ = self._resize_align_multi_scale( _results['img'], input_size, s, min(test_scale_factor)) _results['img'] = image_resized _results = self.transforms(_results) transformed_img = _results['img'].unsqueeze(0) aug_data.append(transformed_img) results['ann_info']['aug_data'] = aug_data return results