# Copyright (c) OpenMMLab. All rights reserved. import warnings import numpy as np from mmpose.core import OneEuroFilter, oks_iou def _compute_iou(bboxA, bboxB): """Compute the Intersection over Union (IoU) between two boxes . Args: bboxA (list): The first bbox info (left, top, right, bottom, score). bboxB (list): The second bbox info (left, top, right, bottom, score). Returns: float: The IoU value. """ x1 = max(bboxA[0], bboxB[0]) y1 = max(bboxA[1], bboxB[1]) x2 = min(bboxA[2], bboxB[2]) y2 = min(bboxA[3], bboxB[3]) inter_area = max(0, x2 - x1) * max(0, y2 - y1) bboxA_area = (bboxA[2] - bboxA[0]) * (bboxA[3] - bboxA[1]) bboxB_area = (bboxB[2] - bboxB[0]) * (bboxB[3] - bboxB[1]) union_area = float(bboxA_area + bboxB_area - inter_area) if union_area == 0: union_area = 1e-5 warnings.warn('union_area=0 is unexpected') iou = inter_area / union_area return iou def _track_by_iou(res, results_last, thr): """Get track id using IoU tracking greedily. Args: res (dict): The bbox & pose results of the person instance. results_last (list[dict]): The bbox & pose & track_id info of the last frame (bbox_result, pose_result, track_id). thr (float): The threshold for iou tracking. Returns: int: The track id for the new person instance. list[dict]: The bbox & pose & track_id info of the persons that have not been matched on the last frame. dict: The matched person instance on the last frame. """ bbox = list(res['bbox']) max_iou_score = -1 max_index = -1 match_result = {} for index, res_last in enumerate(results_last): bbox_last = list(res_last['bbox']) iou_score = _compute_iou(bbox, bbox_last) if iou_score > max_iou_score: max_iou_score = iou_score max_index = index if max_iou_score > thr: track_id = results_last[max_index]['track_id'] match_result = results_last[max_index] del results_last[max_index] else: track_id = -1 return track_id, results_last, match_result def _track_by_oks(res, results_last, thr): """Get track id using OKS tracking greedily. Args: res (dict): The pose results of the person instance. results_last (list[dict]): The pose & track_id info of the last frame (pose_result, track_id). thr (float): The threshold for oks tracking. Returns: int: The track id for the new person instance. list[dict]: The pose & track_id info of the persons that have not been matched on the last frame. dict: The matched person instance on the last frame. """ pose = res['keypoints'].reshape((-1)) area = res['area'] max_index = -1 match_result = {} if len(results_last) == 0: return -1, results_last, match_result pose_last = np.array( [res_last['keypoints'].reshape((-1)) for res_last in results_last]) area_last = np.array([res_last['area'] for res_last in results_last]) oks_score = oks_iou(pose, pose_last, area, area_last) max_index = np.argmax(oks_score) if oks_score[max_index] > thr: track_id = results_last[max_index]['track_id'] match_result = results_last[max_index] del results_last[max_index] else: track_id = -1 return track_id, results_last, match_result def _get_area(results): """Get bbox for each person instance on the current frame. Args: results (list[dict]): The pose results of the current frame (pose_result). Returns: list[dict]: The bbox & pose info of the current frame (bbox_result, pose_result, area). """ for result in results: if 'bbox' in result: result['area'] = ((result['bbox'][2] - result['bbox'][0]) * (result['bbox'][3] - result['bbox'][1])) else: xmin = np.min( result['keypoints'][:, 0][result['keypoints'][:, 0] > 0], initial=1e10) xmax = np.max(result['keypoints'][:, 0]) ymin = np.min( result['keypoints'][:, 1][result['keypoints'][:, 1] > 0], initial=1e10) ymax = np.max(result['keypoints'][:, 1]) result['area'] = (xmax - xmin) * (ymax - ymin) result['bbox'] = np.array([xmin, ymin, xmax, ymax]) return results def _temporal_refine(result, match_result, fps=None): """Refine koypoints using tracked person instance on last frame. Args: results (dict): The pose results of the current frame (pose_result). match_result (dict): The pose results of the last frame (match_result) Returns: (array): The person keypoints after refine. """ if 'one_euro' in match_result: result['keypoints'][:, :2] = match_result['one_euro']( result['keypoints'][:, :2]) result['one_euro'] = match_result['one_euro'] else: result['one_euro'] = OneEuroFilter(result['keypoints'][:, :2], fps=fps) return result['keypoints'] def get_track_id(results, results_last, next_id, min_keypoints=3, use_oks=False, tracking_thr=0.3, use_one_euro=False, fps=None): """Get track id for each person instance on the current frame. Args: results (list[dict]): The bbox & pose results of the current frame (bbox_result, pose_result). results_last (list[dict]): The bbox & pose & track_id info of the last frame (bbox_result, pose_result, track_id). next_id (int): The track id for the new person instance. min_keypoints (int): Minimum number of keypoints recognized as person. default: 3. use_oks (bool): Flag to using oks tracking. default: False. tracking_thr (float): The threshold for tracking. use_one_euro (bool): Option to use one-euro-filter. default: False. fps (optional): Parameters that d_cutoff when one-euro-filter is used as a video input Returns: tuple: - results (list[dict]): The bbox & pose & track_id info of the \ current frame (bbox_result, pose_result, track_id). - next_id (int): The track id for the new person instance. """ results = _get_area(results) if use_oks: _track = _track_by_oks else: _track = _track_by_iou for result in results: track_id, results_last, match_result = _track(result, results_last, tracking_thr) if track_id == -1: if np.count_nonzero(result['keypoints'][:, 1]) > min_keypoints: result['track_id'] = next_id next_id += 1 else: # If the number of keypoints detected is small, # delete that person instance. result['keypoints'][:, 1] = -10 result['bbox'] *= 0 result['track_id'] = -1 else: result['track_id'] = track_id if use_one_euro: result['keypoints'] = _temporal_refine( result, match_result, fps=fps) del match_result return results, next_id def vis_pose_tracking_result(model, img, result, radius=4, thickness=1, kpt_score_thr=0.3, dataset='TopDownCocoDataset', dataset_info=None, show=False, out_file=None): """Visualize the pose tracking results on the image. Args: model (nn.Module): The loaded detector. img (str | np.ndarray): Image filename or loaded image. result (list[dict]): The results to draw over `img` (bbox_result, pose_result). radius (int): Radius of circles. thickness (int): Thickness of lines. kpt_score_thr (float): The threshold to visualize the keypoints. skeleton (list[tuple]): Default None. show (bool): Whether to show the image. Default True. out_file (str|None): The filename of the output visualization image. """ if hasattr(model, 'module'): model = model.module palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]]) if dataset_info is None and dataset is not None: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) # TODO: These will be removed in the later versions. if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset', 'TopDownOCHumanDataset'): kpt_num = 17 skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]] elif dataset == 'TopDownCocoWholeBodyDataset': kpt_num = 133 skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18], [15, 19], [16, 20], [16, 21], [16, 22], [91, 92], [92, 93], [93, 94], [94, 95], [91, 96], [96, 97], [97, 98], [98, 99], [91, 100], [100, 101], [101, 102], [102, 103], [91, 104], [104, 105], [105, 106], [106, 107], [91, 108], [108, 109], [109, 110], [110, 111], [112, 113], [113, 114], [114, 115], [115, 116], [112, 117], [117, 118], [118, 119], [119, 120], [112, 121], [121, 122], [122, 123], [123, 124], [112, 125], [125, 126], [126, 127], [127, 128], [112, 129], [129, 130], [130, 131], [131, 132]] radius = 1 elif dataset == 'TopDownAicDataset': kpt_num = 14 skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5], [8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13], [0, 6], [3, 9]] elif dataset == 'TopDownMpiiDataset': kpt_num = 16 skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7], [7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13], [13, 14], [14, 15]] elif dataset in ('OneHand10KDataset', 'FreiHandDataset', 'PanopticDataset'): kpt_num = 21 skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] elif dataset == 'InterHand2DDataset': kpt_num = 21 skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9], [9, 10], [10, 11], [12, 13], [13, 14], [14, 15], [16, 17], [17, 18], [18, 19], [3, 20], [7, 20], [11, 20], [15, 20], [19, 20]] else: raise NotImplementedError() elif dataset_info is not None: kpt_num = dataset_info.keypoint_num skeleton = dataset_info.skeleton for res in result: track_id = res['track_id'] bbox_color = palette[track_id % len(palette)] pose_kpt_color = palette[[track_id % len(palette)] * kpt_num] pose_link_color = palette[[track_id % len(palette)] * len(skeleton)] img = model.show_result( img, [res], skeleton, radius=radius, thickness=thickness, pose_kpt_color=pose_kpt_color, pose_link_color=pose_link_color, bbox_color=tuple(bbox_color.tolist()), kpt_score_thr=kpt_score_thr, show=show, out_file=out_file) return img