# Copyright (c) OpenMMLab. All rights reserved. import warnings import numpy as np import torch from mmcv.parallel import collate, scatter from mmpose.datasets.pipelines import Compose from .inference import _box2cs, _xywh2xyxy, _xyxy2xywh def extract_pose_sequence(pose_results, frame_idx, causal, seq_len, step=1): """Extract the target frame from 2D pose results, and pad the sequence to a fixed length. Args: pose_results (list[list[dict]]): Multi-frame pose detection results stored in a nested list. Each element of the outer list is the pose detection results of a single frame, and each element of the inner list is the pose information of one person, which contains: - keypoints (ndarray[K, 2 or 3]): x, y, [score] - track_id (int): unique id of each person, required \ when ``with_track_id==True``. - bbox ((4, ) or (5, )): left, right, top, bottom, [score] frame_idx (int): The index of the frame in the original video. causal (bool): If True, the target frame is the last frame in a sequence. Otherwise, the target frame is in the middle of a sequence. seq_len (int): The number of frames in the input sequence. step (int): Step size to extract frames from the video. Returns: list[list[dict]]: Multi-frame pose detection results stored \ in a nested list with a length of seq_len. """ if causal: frames_left = seq_len - 1 frames_right = 0 else: frames_left = (seq_len - 1) // 2 frames_right = frames_left num_frames = len(pose_results) # get the padded sequence pad_left = max(0, frames_left - frame_idx // step) pad_right = max(0, frames_right - (num_frames - 1 - frame_idx) // step) start = max(frame_idx % step, frame_idx - frames_left * step) end = min(num_frames - (num_frames - 1 - frame_idx) % step, frame_idx + frames_right * step + 1) pose_results_seq = [pose_results[0]] * pad_left + \ pose_results[start:end:step] + [pose_results[-1]] * pad_right return pose_results_seq def _gather_pose_lifter_inputs(pose_results, bbox_center, bbox_scale, norm_pose_2d=False): """Gather input data (keypoints and track_id) for pose lifter model. Note: - The temporal length of the pose detection results: T - The number of the person instances: N - The number of the keypoints: K - The channel number of each keypoint: C Args: pose_results (List[List[Dict]]): Multi-frame pose detection results stored in a nested list. Each element of the outer list is the pose detection results of a single frame, and each element of the inner list is the pose information of one person, which contains: - keypoints (ndarray[K, 2 or 3]): x, y, [score] - track_id (int): unique id of each person, required when ``with_track_id==True``` - bbox ((4, ) or (5, )): left, right, top, bottom, [score] bbox_center (ndarray[1, 2]): x, y. The average center coordinate of the bboxes in the dataset. bbox_scale (int|float): The average scale of the bboxes in the dataset. norm_pose_2d (bool): If True, scale the bbox (along with the 2D pose) to bbox_scale, and move the bbox (along with the 2D pose) to bbox_center. Default: False. Returns: list[list[dict]]: Multi-frame pose detection results stored in a nested list. Each element of the outer list is the pose detection results of a single frame, and each element of the inner list is the pose information of one person, which contains: - keypoints (ndarray[K, 2 or 3]): x, y, [score] - track_id (int): unique id of each person, required when ``with_track_id==True`` """ sequence_inputs = [] for frame in pose_results: frame_inputs = [] for res in frame: inputs = dict() if norm_pose_2d: bbox = res['bbox'] center = np.array([[(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]]) scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) inputs['keypoints'] = (res['keypoints'][:, :2] - center) \ / scale * bbox_scale + bbox_center else: inputs['keypoints'] = res['keypoints'][:, :2] if res['keypoints'].shape[1] == 3: inputs['keypoints'] = np.concatenate( [inputs['keypoints'], res['keypoints'][:, 2:]], axis=1) if 'track_id' in res: inputs['track_id'] = res['track_id'] frame_inputs.append(inputs) sequence_inputs.append(frame_inputs) return sequence_inputs def _collate_pose_sequence(pose_results, with_track_id=True, target_frame=-1): """Reorganize multi-frame pose detection results into individual pose sequences. Note: - The temporal length of the pose detection results: T - The number of the person instances: N - The number of the keypoints: K - The channel number of each keypoint: C Args: pose_results (List[List[Dict]]): Multi-frame pose detection results stored in a nested list. Each element of the outer list is the pose detection results of a single frame, and each element of the inner list is the pose information of one person, which contains: - keypoints (ndarray[K, 2 or 3]): x, y, [score] - track_id (int): unique id of each person, required when ``with_track_id==True``` with_track_id (bool): If True, the element in pose_results is expected to contain "track_id", which will be used to gather the pose sequence of a person from multiple frames. Otherwise, the pose results in each frame are expected to have a consistent number and order of identities. Default is True. target_frame (int): The index of the target frame. Default: -1. """ T = len(pose_results) assert T > 0 target_frame = (T + target_frame) % T # convert negative index to positive N = len(pose_results[target_frame]) # use identities in the target frame if N == 0: return [] K, C = pose_results[target_frame][0]['keypoints'].shape track_ids = None if with_track_id: track_ids = [res['track_id'] for res in pose_results[target_frame]] pose_sequences = [] for idx in range(N): pose_seq = dict() # gather static information for k, v in pose_results[target_frame][idx].items(): if k != 'keypoints': pose_seq[k] = v # gather keypoints if not with_track_id: pose_seq['keypoints'] = np.stack( [frame[idx]['keypoints'] for frame in pose_results]) else: keypoints = np.zeros((T, K, C), dtype=np.float32) keypoints[target_frame] = pose_results[target_frame][idx][ 'keypoints'] # find the left most frame containing track_ids[idx] for frame_idx in range(target_frame - 1, -1, -1): contains_idx = False for res in pose_results[frame_idx]: if res['track_id'] == track_ids[idx]: keypoints[frame_idx] = res['keypoints'] contains_idx = True break if not contains_idx: # replicate the left most frame keypoints[:frame_idx + 1] = keypoints[frame_idx + 1] break # find the right most frame containing track_idx[idx] for frame_idx in range(target_frame + 1, T): contains_idx = False for res in pose_results[frame_idx]: if res['track_id'] == track_ids[idx]: keypoints[frame_idx] = res['keypoints'] contains_idx = True break if not contains_idx: # replicate the right most frame keypoints[frame_idx + 1:] = keypoints[frame_idx] break pose_seq['keypoints'] = keypoints pose_sequences.append(pose_seq) return pose_sequences def inference_pose_lifter_model(model, pose_results_2d, dataset=None, dataset_info=None, with_track_id=True, image_size=None, norm_pose_2d=False): """Inference 3D pose from 2D pose sequences using a pose lifter model. Args: model (nn.Module): The loaded pose lifter model pose_results_2d (list[list[dict]]): The 2D pose sequences stored in a nested list. Each element of the outer list is the 2D pose results of a single frame, and each element of the inner list is the 2D pose of one person, which contains: - "keypoints" (ndarray[K, 2 or 3]): x, y, [score] - "track_id" (int) dataset (str): Dataset name, e.g. 'Body3DH36MDataset' with_track_id: If True, the element in pose_results_2d is expected to contain "track_id", which will be used to gather the pose sequence of a person from multiple frames. Otherwise, the pose results in each frame are expected to have a consistent number and order of identities. Default is True. image_size (tuple|list): image width, image height. If None, image size will not be contained in dict ``data``. norm_pose_2d (bool): If True, scale the bbox (along with the 2D pose) to the average bbox scale of the dataset, and move the bbox (along with the 2D pose) to the average bbox center of the dataset. Returns: list[dict]: 3D pose inference results. Each element is the result of \ an instance, which contains: - "keypoints_3d" (ndarray[K, 3]): predicted 3D keypoints - "keypoints" (ndarray[K, 2 or 3]): from the last frame in \ ``pose_results_2d``. - "track_id" (int): from the last frame in ``pose_results_2d``. \ If there is no valid instance, an empty list will be \ returned. """ cfg = model.cfg test_pipeline = Compose(cfg.test_pipeline) device = next(model.parameters()).device if device.type == 'cpu': device = -1 if dataset_info is not None: flip_pairs = dataset_info.flip_pairs assert 'stats_info' in dataset_info._dataset_info bbox_center = dataset_info._dataset_info['stats_info']['bbox_center'] bbox_scale = dataset_info._dataset_info['stats_info']['bbox_scale'] else: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) # TODO: These will be removed in the later versions. if dataset == 'Body3DH36MDataset': flip_pairs = [[1, 4], [2, 5], [3, 6], [11, 14], [12, 15], [13, 16]] bbox_center = np.array([[528, 427]], dtype=np.float32) bbox_scale = 400 else: raise NotImplementedError() target_idx = -1 if model.causal else len(pose_results_2d) // 2 pose_lifter_inputs = _gather_pose_lifter_inputs(pose_results_2d, bbox_center, bbox_scale, norm_pose_2d) pose_sequences_2d = _collate_pose_sequence(pose_lifter_inputs, with_track_id, target_idx) if not pose_sequences_2d: return [] batch_data = [] for seq in pose_sequences_2d: pose_2d = seq['keypoints'].astype(np.float32) T, K, C = pose_2d.shape input_2d = pose_2d[..., :2] input_2d_visible = pose_2d[..., 2:3] if C > 2: input_2d_visible = pose_2d[..., 2:3] else: input_2d_visible = np.ones((T, K, 1), dtype=np.float32) # TODO: Will be removed in the later versions # Dummy 3D input # This is for compatibility with configs in mmpose<=v0.14.0, where a # 3D input is required to generate denormalization parameters. This # part will be removed in the future. target = np.zeros((K, 3), dtype=np.float32) target_visible = np.ones((K, 1), dtype=np.float32) # Dummy image path # This is for compatibility with configs in mmpose<=v0.14.0, where # target_image_path is required. This part will be removed in the # future. target_image_path = None data = { 'input_2d': input_2d, 'input_2d_visible': input_2d_visible, 'target': target, 'target_visible': target_visible, 'target_image_path': target_image_path, 'ann_info': { 'num_joints': K, 'flip_pairs': flip_pairs } } if image_size is not None: assert len(image_size) == 2 data['image_width'] = image_size[0] data['image_height'] = image_size[1] data = test_pipeline(data) batch_data.append(data) batch_data = collate(batch_data, samples_per_gpu=len(batch_data)) batch_data = scatter(batch_data, target_gpus=[device])[0] with torch.no_grad(): result = model( input=batch_data['input'], metas=batch_data['metas'], return_loss=False) poses_3d = result['preds'] if poses_3d.shape[-1] != 4: assert poses_3d.shape[-1] == 3 dummy_score = np.ones( poses_3d.shape[:-1] + (1, ), dtype=poses_3d.dtype) poses_3d = np.concatenate((poses_3d, dummy_score), axis=-1) pose_results = [] for pose_2d, pose_3d in zip(pose_sequences_2d, poses_3d): pose_result = pose_2d.copy() pose_result['keypoints_3d'] = pose_3d pose_results.append(pose_result) return pose_results def vis_3d_pose_result(model, result, img=None, dataset='Body3DH36MDataset', dataset_info=None, kpt_score_thr=0.3, radius=8, thickness=2, num_instances=-1, show=False, out_file=None): """Visualize the 3D pose estimation results. Args: model (nn.Module): The loaded model. result (list[dict]) """ if dataset_info is not None: skeleton = dataset_info.skeleton pose_kpt_color = dataset_info.pose_kpt_color pose_link_color = dataset_info.pose_link_color else: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) # TODO: These will be removed in the later versions. palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]]) if dataset == 'Body3DH36MDataset': skeleton = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13], [8, 14], [14, 15], [15, 16]] pose_kpt_color = palette[[ 9, 0, 0, 0, 16, 16, 16, 9, 9, 9, 9, 16, 16, 16, 0, 0, 0 ]] pose_link_color = palette[[ 0, 0, 0, 16, 16, 16, 9, 9, 9, 9, 16, 16, 16, 0, 0, 0 ]] elif dataset == 'InterHand3DDataset': skeleton = [[0, 1], [1, 2], [2, 3], [3, 20], [4, 5], [5, 6], [6, 7], [7, 20], [8, 9], [9, 10], [10, 11], [11, 20], [12, 13], [13, 14], [14, 15], [15, 20], [16, 17], [17, 18], [18, 19], [19, 20], [21, 22], [22, 23], [23, 24], [24, 41], [25, 26], [26, 27], [27, 28], [28, 41], [29, 30], [30, 31], [31, 32], [32, 41], [33, 34], [34, 35], [35, 36], [36, 41], [37, 38], [38, 39], [39, 40], [40, 41]] pose_kpt_color = [[14, 128, 250], [14, 128, 250], [14, 128, 250], [14, 128, 250], [80, 127, 255], [80, 127, 255], [80, 127, 255], [80, 127, 255], [71, 99, 255], [71, 99, 255], [71, 99, 255], [71, 99, 255], [0, 36, 255], [0, 36, 255], [0, 36, 255], [0, 36, 255], [0, 0, 230], [0, 0, 230], [0, 0, 230], [0, 0, 230], [0, 0, 139], [237, 149, 100], [237, 149, 100], [237, 149, 100], [237, 149, 100], [230, 128, 77], [230, 128, 77], [230, 128, 77], [230, 128, 77], [255, 144, 30], [255, 144, 30], [255, 144, 30], [255, 144, 30], [153, 51, 0], [153, 51, 0], [153, 51, 0], [153, 51, 0], [255, 51, 13], [255, 51, 13], [255, 51, 13], [255, 51, 13], [103, 37, 8]] pose_link_color = [[14, 128, 250], [14, 128, 250], [14, 128, 250], [14, 128, 250], [80, 127, 255], [80, 127, 255], [80, 127, 255], [80, 127, 255], [71, 99, 255], [71, 99, 255], [71, 99, 255], [71, 99, 255], [0, 36, 255], [0, 36, 255], [0, 36, 255], [0, 36, 255], [0, 0, 230], [0, 0, 230], [0, 0, 230], [0, 0, 230], [237, 149, 100], [237, 149, 100], [237, 149, 100], [237, 149, 100], [230, 128, 77], [230, 128, 77], [230, 128, 77], [230, 128, 77], [255, 144, 30], [255, 144, 30], [255, 144, 30], [255, 144, 30], [153, 51, 0], [153, 51, 0], [153, 51, 0], [153, 51, 0], [255, 51, 13], [255, 51, 13], [255, 51, 13], [255, 51, 13]] else: raise NotImplementedError if hasattr(model, 'module'): model = model.module img = model.show_result( result, img, skeleton, radius=radius, thickness=thickness, pose_kpt_color=pose_kpt_color, pose_link_color=pose_link_color, num_instances=num_instances, show=show, out_file=out_file) return img def inference_interhand_3d_model(model, img_or_path, det_results, bbox_thr=None, format='xywh', dataset='InterHand3DDataset'): """Inference a single image with a list of hand bounding boxes. Note: - num_bboxes: N - num_keypoints: K Args: model (nn.Module): The loaded pose model. img_or_path (str | np.ndarray): Image filename or loaded image. det_results (list[dict]): The 2D bbox sequences stored in a list. Each each element of the list is the bbox of one person, whose shape is (ndarray[4 or 5]), containing 4 box coordinates (and score). dataset (str): Dataset name. format: bbox format ('xyxy' | 'xywh'). Default: 'xywh'. 'xyxy' means (left, top, right, bottom), 'xywh' means (left, top, width, height). Returns: list[dict]: 3D pose inference results. Each element is the result \ of an instance, which contains the predicted 3D keypoints with \ shape (ndarray[K,3]). If there is no valid instance, an \ empty list will be returned. """ assert format in ['xyxy', 'xywh'] pose_results = [] if len(det_results) == 0: return pose_results # Change for-loop preprocess each bbox to preprocess all bboxes at once. bboxes = np.array([box['bbox'] for box in det_results]) # Select bboxes by score threshold if bbox_thr is not None: assert bboxes.shape[1] == 5 valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0] bboxes = bboxes[valid_idx] det_results = [det_results[i] for i in valid_idx] if format == 'xyxy': bboxes_xyxy = bboxes bboxes_xywh = _xyxy2xywh(bboxes) else: # format is already 'xywh' bboxes_xywh = bboxes bboxes_xyxy = _xywh2xyxy(bboxes) # if bbox_thr remove all bounding box if len(bboxes_xywh) == 0: return [] cfg = model.cfg device = next(model.parameters()).device if device.type == 'cpu': device = -1 # build the data pipeline test_pipeline = Compose(cfg.test_pipeline) assert len(bboxes[0]) in [4, 5] if dataset == 'InterHand3DDataset': flip_pairs = [[i, 21 + i] for i in range(21)] else: raise NotImplementedError() batch_data = [] for bbox in bboxes: center, scale = _box2cs(cfg, bbox) # prepare data data = { 'center': center, 'scale': scale, 'bbox_score': bbox[4] if len(bbox) == 5 else 1, 'bbox_id': 0, # need to be assigned if batch_size > 1 'dataset': dataset, 'joints_3d': np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), 'joints_3d_visible': np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), 'rotation': 0, 'ann_info': { 'image_size': np.array(cfg.data_cfg['image_size']), 'num_joints': cfg.data_cfg['num_joints'], 'flip_pairs': flip_pairs, 'heatmap3d_depth_bound': cfg.data_cfg['heatmap3d_depth_bound'], 'heatmap_size_root': cfg.data_cfg['heatmap_size_root'], 'root_depth_bound': cfg.data_cfg['root_depth_bound'] } } if isinstance(img_or_path, np.ndarray): data['img'] = img_or_path else: data['image_file'] = img_or_path data = test_pipeline(data) batch_data.append(data) batch_data = collate(batch_data, samples_per_gpu=len(batch_data)) batch_data = scatter(batch_data, [device])[0] # forward the model with torch.no_grad(): result = model( img=batch_data['img'], img_metas=batch_data['img_metas'], return_loss=False) poses_3d = result['preds'] rel_root_depth = result['rel_root_depth'] hand_type = result['hand_type'] if poses_3d.shape[-1] != 4: assert poses_3d.shape[-1] == 3 dummy_score = np.ones( poses_3d.shape[:-1] + (1, ), dtype=poses_3d.dtype) poses_3d = np.concatenate((poses_3d, dummy_score), axis=-1) # add relative root depth to left hand joints poses_3d[:, 21:, 2] += rel_root_depth # set joint scores according to hand type poses_3d[:, :21, 3] *= hand_type[:, [0]] poses_3d[:, 21:, 3] *= hand_type[:, [1]] pose_results = [] for pose_3d, person_res, bbox_xyxy in zip(poses_3d, det_results, bboxes_xyxy): pose_res = person_res.copy() pose_res['keypoints_3d'] = pose_3d pose_res['bbox'] = bbox_xyxy pose_results.append(pose_res) return pose_results def inference_mesh_model(model, img_or_path, det_results, bbox_thr=None, format='xywh', dataset='MeshH36MDataset'): """Inference a single image with a list of bounding boxes. Note: - num_bboxes: N - num_keypoints: K - num_vertices: V - num_faces: F Args: model (nn.Module): The loaded pose model. img_or_path (str | np.ndarray): Image filename or loaded image. det_results (list[dict]): The 2D bbox sequences stored in a list. Each element of the list is the bbox of one person. "bbox" (ndarray[4 or 5]): The person bounding box, which contains 4 box coordinates (and score). bbox_thr (float | None): Threshold for bounding boxes. Only bboxes with higher scores will be fed into the pose detector. If bbox_thr is None, all boxes will be used. format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'. - 'xyxy' means (left, top, right, bottom), - 'xywh' means (left, top, width, height). dataset (str): Dataset name. Returns: list[dict]: 3D pose inference results. Each element \ is the result of an instance, which contains: - 'bbox' (ndarray[4]): instance bounding bbox - 'center' (ndarray[2]): bbox center - 'scale' (ndarray[2]): bbox scale - 'keypoints_3d' (ndarray[K,3]): predicted 3D keypoints - 'camera' (ndarray[3]): camera parameters - 'vertices' (ndarray[V, 3]): predicted 3D vertices - 'faces' (ndarray[F, 3]): mesh faces If there is no valid instance, an empty list will be returned. """ assert format in ['xyxy', 'xywh'] pose_results = [] if len(det_results) == 0: return pose_results # Change for-loop preprocess each bbox to preprocess all bboxes at once. bboxes = np.array([box['bbox'] for box in det_results]) # Select bboxes by score threshold if bbox_thr is not None: assert bboxes.shape[1] == 5 valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0] bboxes = bboxes[valid_idx] det_results = [det_results[i] for i in valid_idx] if format == 'xyxy': bboxes_xyxy = bboxes bboxes_xywh = _xyxy2xywh(bboxes) else: # format is already 'xywh' bboxes_xywh = bboxes bboxes_xyxy = _xywh2xyxy(bboxes) # if bbox_thr remove all bounding box if len(bboxes_xywh) == 0: return [] cfg = model.cfg device = next(model.parameters()).device if device.type == 'cpu': device = -1 # build the data pipeline test_pipeline = Compose(cfg.test_pipeline) assert len(bboxes[0]) in [4, 5] if dataset == 'MeshH36MDataset': flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [20, 21], [22, 23]] else: raise NotImplementedError() batch_data = [] for bbox in bboxes: center, scale = _box2cs(cfg, bbox) # prepare data data = { 'image_file': img_or_path, 'center': center, 'scale': scale, 'rotation': 0, 'bbox_score': bbox[4] if len(bbox) == 5 else 1, 'dataset': dataset, 'joints_2d': np.zeros((cfg.data_cfg.num_joints, 2), dtype=np.float32), 'joints_2d_visible': np.zeros((cfg.data_cfg.num_joints, 1), dtype=np.float32), 'joints_3d': np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), 'joints_3d_visible': np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), 'pose': np.zeros(72, dtype=np.float32), 'beta': np.zeros(10, dtype=np.float32), 'has_smpl': 0, 'ann_info': { 'image_size': np.array(cfg.data_cfg['image_size']), 'num_joints': cfg.data_cfg['num_joints'], 'flip_pairs': flip_pairs, } } data = test_pipeline(data) batch_data.append(data) batch_data = collate(batch_data, samples_per_gpu=len(batch_data)) batch_data = scatter(batch_data, target_gpus=[device])[0] # forward the model with torch.no_grad(): preds = model( img=batch_data['img'], img_metas=batch_data['img_metas'], return_loss=False, return_vertices=True, return_faces=True) for idx in range(len(det_results)): pose_res = det_results[idx].copy() pose_res['bbox'] = bboxes_xyxy[idx] pose_res['center'] = batch_data['img_metas'][idx]['center'] pose_res['scale'] = batch_data['img_metas'][idx]['scale'] pose_res['keypoints_3d'] = preds['keypoints_3d'][idx] pose_res['camera'] = preds['camera'][idx] pose_res['vertices'] = preds['vertices'][idx] pose_res['faces'] = preds['faces'] pose_results.append(pose_res) return pose_results def vis_3d_mesh_result(model, result, img=None, show=False, out_file=None): """Visualize the 3D mesh estimation results. Args: model (nn.Module): The loaded model. result (list[dict]): 3D mesh estimation results. """ if hasattr(model, 'module'): model = model.module img = model.show_result(result, img, show=show, out_file=out_file) return img