# Copyright (c) OpenMMLab. All rights reserved. import os import warnings import mmcv import numpy as np import torch from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from PIL import Image from mmpose.core.post_processing import oks_nms from mmpose.datasets.dataset_info import DatasetInfo from mmpose.datasets.pipelines import Compose from mmpose.models import build_posenet from mmpose.utils.hooks import OutputHook os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' def init_pose_model(config, checkpoint=None, device='cuda:0'): """Initialize a pose model from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. Returns: nn.Module: The constructed detector. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') config.model.pretrained = None model = build_posenet(config.model) if checkpoint is not None: # load model checkpoint load_checkpoint(model, checkpoint, map_location='cpu') # save the config in the model for convenience model.cfg = config model.to(device) model.eval() return model def _xyxy2xywh(bbox_xyxy): """Transform the bbox format from x1y1x2y2 to xywh. Args: bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, right, bottom, [score]) Returns: np.ndarray: Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, width, height, [score]) """ bbox_xywh = bbox_xyxy.copy() bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1 bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1 return bbox_xywh def _xywh2xyxy(bbox_xywh): """Transform the bbox format from xywh to x1y1x2y2. Args: bbox_xywh (ndarray): Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, width, height, [score]) Returns: np.ndarray: Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, right, bottom, [score]) """ bbox_xyxy = bbox_xywh.copy() bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1 bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1 return bbox_xyxy def _box2cs(cfg, box): """This encodes bbox(x,y,w,h) into (center, scale) Args: x, y, w, h Returns: tuple: A tuple containing center and scale. - np.ndarray[float32](2,): Center of the bbox (x, y). - np.ndarray[float32](2,): Scale of the bbox w & h. """ x, y, w, h = box[:4] input_size = cfg.data_cfg['image_size'] aspect_ratio = input_size[0] / input_size[1] center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio # pixel std is 200.0 scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) scale = scale * 1.25 return center, scale def _inference_single_pose_model(model, img_or_path, bboxes, dataset='TopDownCocoDataset', dataset_info=None, return_heatmap=False): """Inference human bounding boxes. Note: - num_bboxes: N - num_keypoints: K Args: model (nn.Module): The loaded pose model. img_or_path (str | np.ndarray): Image filename or loaded image. bboxes (list | np.ndarray): All bounding boxes (with scores), shaped (N, 4) or (N, 5). (left, top, width, height, [score]) where N is number of bounding boxes. dataset (str): Dataset name. Deprecated. dataset_info (DatasetInfo): A class containing all dataset info. outputs (list[str] | tuple[str]): Names of layers whose output is to be returned, default: None Returns: ndarray[NxKx3]: Predicted pose x, y, score. heatmap[N, K, H, W]: Model output heatmap. """ cfg = model.cfg device = next(model.parameters()).device if device.type == 'cpu': device = -1 # build the data pipeline test_pipeline = Compose(cfg.test_pipeline) assert len(bboxes[0]) in [4, 5] if dataset_info is not None: dataset_name = dataset_info.dataset_name flip_pairs = dataset_info.flip_pairs else: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) # TODO: These will be removed in the later versions. if dataset in ('TopDownCocoDataset', 'TopDownOCHumanDataset', 'AnimalMacaqueDataset'): flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] elif dataset == 'TopDownCocoWholeBodyDataset': body = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] foot = [[17, 20], [18, 21], [19, 22]] face = [[23, 39], [24, 38], [25, 37], [26, 36], [27, 35], [28, 34], [29, 33], [30, 32], [40, 49], [41, 48], [42, 47], [43, 46], [44, 45], [54, 58], [55, 57], [59, 68], [60, 67], [61, 66], [62, 65], [63, 70], [64, 69], [71, 77], [72, 76], [73, 75], [78, 82], [79, 81], [83, 87], [84, 86], [88, 90]] hand = [[91, 112], [92, 113], [93, 114], [94, 115], [95, 116], [96, 117], [97, 118], [98, 119], [99, 120], [100, 121], [101, 122], [102, 123], [103, 124], [104, 125], [105, 126], [106, 127], [107, 128], [108, 129], [109, 130], [110, 131], [111, 132]] flip_pairs = body + foot + face + hand elif dataset == 'TopDownAicDataset': flip_pairs = [[0, 3], [1, 4], [2, 5], [6, 9], [7, 10], [8, 11]] elif dataset == 'TopDownMpiiDataset': flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]] elif dataset == 'TopDownMpiiTrbDataset': flip_pairs = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [14, 15], [16, 22], [28, 34], [17, 23], [29, 35], [18, 24], [30, 36], [19, 25], [31, 37], [20, 26], [32, 38], [21, 27], [33, 39]] elif dataset in ('OneHand10KDataset', 'FreiHandDataset', 'PanopticDataset', 'InterHand2DDataset'): flip_pairs = [] elif dataset in 'Face300WDataset': flip_pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], [7, 9], [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], [31, 35], [32, 34], [36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46], [48, 54], [49, 53], [50, 52], [61, 63], [60, 64], [67, 65], [58, 56], [59, 55]] elif dataset in 'FaceAFLWDataset': flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]] elif dataset in 'FaceCOFWDataset': flip_pairs = [[0, 1], [4, 6], [2, 3], [5, 7], [8, 9], [10, 11], [12, 14], [16, 17], [13, 15], [18, 19], [22, 23]] elif dataset in 'FaceWFLWDataset': flip_pairs = [[0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22], [11, 21], [12, 20], [13, 19], [14, 18], [15, 17], [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47], [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73], [55, 59], [56, 58], [76, 82], [77, 81], [78, 80], [87, 83], [86, 84], [88, 92], [89, 91], [95, 93], [96, 97]] elif dataset in 'AnimalFlyDataset': flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22], [11, 23], [12, 24], [13, 25], [14, 26], [15, 27], [16, 28], [17, 29], [30, 31]] elif dataset in 'AnimalHorse10Dataset': flip_pairs = [] elif dataset in 'AnimalLocustDataset': flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24], [10, 25], [11, 26], [12, 27], [13, 28], [14, 29], [15, 30], [16, 31], [17, 32], [18, 33], [19, 34]] elif dataset in 'AnimalZebraDataset': flip_pairs = [[3, 4], [5, 6]] elif dataset in 'AnimalPoseDataset': flip_pairs = [[0, 1], [2, 3], [8, 9], [10, 11], [12, 13], [14, 15], [16, 17], [18, 19]] else: raise NotImplementedError() dataset_name = dataset batch_data = [] for bbox in bboxes: center, scale = _box2cs(cfg, bbox) # prepare data data = { 'center': center, 'scale': scale, 'bbox_score': bbox[4] if len(bbox) == 5 else 1, 'bbox_id': 0, # need to be assigned if batch_size > 1 'dataset': dataset_name, 'joints_3d': np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), 'joints_3d_visible': np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), 'rotation': 0, 'ann_info': { 'image_size': np.array(cfg.data_cfg['image_size']), 'num_joints': cfg.data_cfg['num_joints'], 'flip_pairs': flip_pairs } } if isinstance(img_or_path, np.ndarray): data['img'] = img_or_path else: data['image_file'] = img_or_path data = test_pipeline(data) batch_data.append(data) batch_data = collate(batch_data, samples_per_gpu=len(batch_data)) batch_data = scatter(batch_data, [device])[0] # forward the model with torch.no_grad(): result = model( img=batch_data['img'], img_metas=batch_data['img_metas'], return_loss=False, return_heatmap=return_heatmap) return result['preds'], result['output_heatmap'] def inference_top_down_pose_model(model, img_or_path, person_results=None, bbox_thr=None, format='xywh', dataset='TopDownCocoDataset', dataset_info=None, return_heatmap=False, outputs=None): """Inference a single image with a list of person bounding boxes. Note: - num_people: P - num_keypoints: K - bbox height: H - bbox width: W Args: model (nn.Module): The loaded pose model. img_or_path (str| np.ndarray): Image filename or loaded image. person_results (list(dict), optional): a list of detected persons that contains ``bbox`` and/or ``track_id``: - ``bbox`` (4, ) or (5, ): The person bounding box, which contains 4 box coordinates (and score). - ``track_id`` (int): The unique id for each human instance. If not provided, a dummy person result with a bbox covering the entire image will be used. Default: None. bbox_thr (float | None): Threshold for bounding boxes. Only bboxes with higher scores will be fed into the pose detector. If bbox_thr is None, all boxes will be used. format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'. - `xyxy` means (left, top, right, bottom), - `xywh` means (left, top, width, height). dataset (str): Dataset name, e.g. 'TopDownCocoDataset'. It is deprecated. Please use dataset_info instead. dataset_info (DatasetInfo): A class containing all dataset info. return_heatmap (bool) : Flag to return heatmap, default: False outputs (list(str) | tuple(str)) : Names of layers whose outputs need to be returned. Default: None. Returns: tuple: - pose_results (list[dict]): The bbox & pose info. \ Each item in the list is a dictionary, \ containing the bbox: (left, top, right, bottom, [score]) \ and the pose (ndarray[Kx3]): x, y, score. - returned_outputs (list[dict[np.ndarray[N, K, H, W] | \ torch.Tensor[N, K, H, W]]]): \ Output feature maps from layers specified in `outputs`. \ Includes 'heatmap' if `return_heatmap` is True. """ # get dataset info if (dataset_info is None and hasattr(model, 'cfg') and 'dataset_info' in model.cfg): dataset_info = DatasetInfo(model.cfg.dataset_info) if dataset_info is None: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663' ' for details.', DeprecationWarning) # only two kinds of bbox format is supported. assert format in ['xyxy', 'xywh'] pose_results = [] returned_outputs = [] if person_results is None: # create dummy person results if isinstance(img_or_path, str): width, height = Image.open(img_or_path).size else: height, width = img_or_path.shape[:2] person_results = [{'bbox': np.array([0, 0, width, height])}] if len(person_results) == 0: return pose_results, returned_outputs # Change for-loop preprocess each bbox to preprocess all bboxes at once. bboxes = np.array([box['bbox'] for box in person_results]) # Select bboxes by score threshold if bbox_thr is not None: assert bboxes.shape[1] == 5 valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0] bboxes = bboxes[valid_idx] person_results = [person_results[i] for i in valid_idx] if format == 'xyxy': bboxes_xyxy = bboxes bboxes_xywh = _xyxy2xywh(bboxes) else: # format is already 'xywh' bboxes_xywh = bboxes bboxes_xyxy = _xywh2xyxy(bboxes) # if bbox_thr remove all bounding box if len(bboxes_xywh) == 0: return [], [] with OutputHook(model, outputs=outputs, as_tensor=False) as h: # poses is results['pred'] # N x 17x 3 poses, heatmap = _inference_single_pose_model( model, img_or_path, bboxes_xywh, dataset=dataset, dataset_info=dataset_info, return_heatmap=return_heatmap) if return_heatmap: h.layer_outputs['heatmap'] = heatmap returned_outputs.append(h.layer_outputs) assert len(poses) == len(person_results), print( len(poses), len(person_results), len(bboxes_xyxy)) for pose, person_result, bbox_xyxy in zip(poses, person_results, bboxes_xyxy): pose_result = person_result.copy() pose_result['keypoints'] = pose pose_result['bbox'] = bbox_xyxy pose_results.append(pose_result) return pose_results, returned_outputs def inference_bottom_up_pose_model(model, img_or_path, dataset='BottomUpCocoDataset', dataset_info=None, pose_nms_thr=0.9, return_heatmap=False, outputs=None): """Inference a single image with a bottom-up pose model. Note: - num_people: P - num_keypoints: K - bbox height: H - bbox width: W Args: model (nn.Module): The loaded pose model. img_or_path (str| np.ndarray): Image filename or loaded image. dataset (str): Dataset name, e.g. 'BottomUpCocoDataset'. It is deprecated. Please use dataset_info instead. dataset_info (DatasetInfo): A class containing all dataset info. pose_nms_thr (float): retain oks overlap < pose_nms_thr, default: 0.9. return_heatmap (bool) : Flag to return heatmap, default: False. outputs (list(str) | tuple(str)) : Names of layers whose outputs need to be returned, default: None. Returns: tuple: - pose_results (list[np.ndarray]): The predicted pose info. \ The length of the list is the number of people (P). \ Each item in the list is a ndarray, containing each \ person's pose (np.ndarray[Kx3]): x, y, score. - returned_outputs (list[dict[np.ndarray[N, K, H, W] | \ torch.Tensor[N, K, H, W]]]): \ Output feature maps from layers specified in `outputs`. \ Includes 'heatmap' if `return_heatmap` is True. """ # get dataset info if (dataset_info is None and hasattr(model, 'cfg') and 'dataset_info' in model.cfg): dataset_info = DatasetInfo(model.cfg.dataset_info) if dataset_info is not None: dataset_name = dataset_info.dataset_name flip_index = dataset_info.flip_index sigmas = getattr(dataset_info, 'sigmas', None) else: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) assert (dataset == 'BottomUpCocoDataset') dataset_name = dataset flip_index = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] sigmas = None pose_results = [] returned_outputs = [] cfg = model.cfg device = next(model.parameters()).device if device.type == 'cpu': device = -1 # build the data pipeline test_pipeline = Compose(cfg.test_pipeline) # prepare data data = { 'dataset': dataset_name, 'ann_info': { 'image_size': np.array(cfg.data_cfg['image_size']), 'num_joints': cfg.data_cfg['num_joints'], 'flip_index': flip_index, } } if isinstance(img_or_path, np.ndarray): data['img'] = img_or_path else: data['image_file'] = img_or_path data = test_pipeline(data) data = collate([data], samples_per_gpu=1) data = scatter(data, [device])[0] with OutputHook(model, outputs=outputs, as_tensor=False) as h: # forward the model with torch.no_grad(): result = model( img=data['img'], img_metas=data['img_metas'], return_loss=False, return_heatmap=return_heatmap) if return_heatmap: h.layer_outputs['heatmap'] = result['output_heatmap'] returned_outputs.append(h.layer_outputs) for idx, pred in enumerate(result['preds']): area = (np.max(pred[:, 0]) - np.min(pred[:, 0])) * ( np.max(pred[:, 1]) - np.min(pred[:, 1])) pose_results.append({ 'keypoints': pred[:, :3], 'score': result['scores'][idx], 'area': area, }) # pose nms score_per_joint = cfg.model.test_cfg.get('score_per_joint', False) keep = oks_nms( pose_results, pose_nms_thr, sigmas, score_per_joint=score_per_joint) pose_results = [pose_results[_keep] for _keep in keep] return pose_results, returned_outputs def vis_pose_result(model, img, result, radius=4, thickness=1, kpt_score_thr=0.3, bbox_color='green', dataset='TopDownCocoDataset', dataset_info=None, show=False, out_file=None): """Visualize the detection results on the image. Args: model (nn.Module): The loaded detector. img (str | np.ndarray): Image filename or loaded image. result (list[dict]): The results to draw over `img` (bbox_result, pose_result). radius (int): Radius of circles. thickness (int): Thickness of lines. kpt_score_thr (float): The threshold to visualize the keypoints. skeleton (list[tuple()]): Default None. show (bool): Whether to show the image. Default True. out_file (str|None): The filename of the output visualization image. """ # get dataset info if (dataset_info is None and hasattr(model, 'cfg') and 'dataset_info' in model.cfg): dataset_info = DatasetInfo(model.cfg.dataset_info) if dataset_info is not None: skeleton = dataset_info.skeleton pose_kpt_color = dataset_info.pose_kpt_color pose_link_color = dataset_info.pose_link_color else: warnings.warn( 'dataset is deprecated.' 'Please set `dataset_info` in the config.' 'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', DeprecationWarning) # TODO: These will be removed in the later versions. palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], [153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], [255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]]) if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset', 'TopDownOCHumanDataset', 'AnimalMacaqueDataset'): # show the results skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]] pose_link_color = palette[[ 0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 ]] pose_kpt_color = palette[[ 16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0 ]] elif dataset == 'TopDownCocoWholeBodyDataset': # show the results skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18], [15, 19], [16, 20], [16, 21], [16, 22], [91, 92], [92, 93], [93, 94], [94, 95], [91, 96], [96, 97], [97, 98], [98, 99], [91, 100], [100, 101], [101, 102], [102, 103], [91, 104], [104, 105], [105, 106], [106, 107], [91, 108], [108, 109], [109, 110], [110, 111], [112, 113], [113, 114], [114, 115], [115, 116], [112, 117], [117, 118], [118, 119], [119, 120], [112, 121], [121, 122], [122, 123], [123, 124], [112, 125], [125, 126], [126, 127], [127, 128], [112, 129], [129, 130], [130, 131], [131, 132]] pose_link_color = palette[[ 0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 ] + [16, 16, 16, 16, 16, 16] + [ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16 ] + [ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16 ]] pose_kpt_color = palette[ [16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] + [0, 0, 0, 0, 0, 0] + [19] * (68 + 42)] elif dataset == 'TopDownAicDataset': skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5], [8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13], [0, 6], [3, 9]] pose_link_color = palette[[ 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 0, 7, 7 ]] pose_kpt_color = palette[[ 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 0, 0 ]] elif dataset == 'TopDownMpiiDataset': skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7], [7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13], [13, 14], [14, 15]] pose_link_color = palette[[ 16, 16, 16, 16, 16, 16, 7, 7, 0, 9, 9, 9, 9, 9, 9 ]] pose_kpt_color = palette[[ 16, 16, 16, 16, 16, 16, 7, 7, 0, 0, 9, 9, 9, 9, 9, 9 ]] elif dataset == 'TopDownMpiiTrbDataset': skeleton = [[12, 13], [13, 0], [13, 1], [0, 2], [1, 3], [2, 4], [3, 5], [0, 6], [1, 7], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [14, 15], [16, 17], [18, 19], [20, 21], [22, 23], [24, 25], [26, 27], [28, 29], [30, 31], [32, 33], [34, 35], [36, 37], [38, 39]] pose_link_color = palette[[16] * 14 + [19] * 13] pose_kpt_color = palette[[16] * 14 + [0] * 26] elif dataset in ('OneHand10KDataset', 'FreiHandDataset', 'PanopticDataset'): skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] pose_link_color = palette[[ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16 ]] pose_kpt_color = palette[[ 0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16 ]] elif dataset == 'InterHand2DDataset': skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9], [9, 10], [10, 11], [12, 13], [13, 14], [14, 15], [16, 17], [17, 18], [18, 19], [3, 20], [7, 20], [11, 20], [15, 20], [19, 20]] pose_link_color = palette[[ 0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, 0, 4, 8, 12, 16 ]] pose_kpt_color = palette[[ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, 16, 0 ]] elif dataset == 'Face300WDataset': # show the results skeleton = [] pose_link_color = palette[[]] pose_kpt_color = palette[[19] * 68] kpt_score_thr = 0 elif dataset == 'FaceAFLWDataset': # show the results skeleton = [] pose_link_color = palette[[]] pose_kpt_color = palette[[19] * 19] kpt_score_thr = 0 elif dataset == 'FaceCOFWDataset': # show the results skeleton = [] pose_link_color = palette[[]] pose_kpt_color = palette[[19] * 29] kpt_score_thr = 0 elif dataset == 'FaceWFLWDataset': # show the results skeleton = [] pose_link_color = palette[[]] pose_kpt_color = palette[[19] * 98] kpt_score_thr = 0 elif dataset == 'AnimalHorse10Dataset': skeleton = [[0, 1], [1, 12], [12, 16], [16, 21], [21, 17], [17, 11], [11, 10], [10, 8], [8, 9], [9, 12], [2, 3], [3, 4], [5, 6], [6, 7], [13, 14], [14, 15], [18, 19], [19, 20]] pose_link_color = palette[[4] * 10 + [6] * 2 + [6] * 2 + [7] * 2 + [7] * 2] pose_kpt_color = palette[[ 4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 7, 7, 7, 4, 4, 7, 7, 7, 4 ]] elif dataset == 'AnimalFlyDataset': skeleton = [[1, 0], [2, 0], [3, 0], [4, 3], [5, 4], [7, 6], [8, 7], [9, 8], [11, 10], [12, 11], [13, 12], [15, 14], [16, 15], [17, 16], [19, 18], [20, 19], [21, 20], [23, 22], [24, 23], [25, 24], [27, 26], [28, 27], [29, 28], [30, 3], [31, 3]] pose_link_color = palette[[0] * 25] pose_kpt_color = palette[[0] * 32] elif dataset == 'AnimalLocustDataset': skeleton = [[1, 0], [2, 1], [3, 2], [4, 3], [6, 5], [7, 6], [9, 8], [10, 9], [11, 10], [13, 12], [14, 13], [15, 14], [17, 16], [18, 17], [19, 18], [21, 20], [22, 21], [24, 23], [25, 24], [26, 25], [28, 27], [29, 28], [30, 29], [32, 31], [33, 32], [34, 33]] pose_link_color = palette[[0] * 26] pose_kpt_color = palette[[0] * 35] elif dataset == 'AnimalZebraDataset': skeleton = [[1, 0], [2, 1], [3, 2], [4, 2], [5, 7], [6, 7], [7, 2], [8, 7]] pose_link_color = palette[[0] * 8] pose_kpt_color = palette[[0] * 9] elif dataset in 'AnimalPoseDataset': skeleton = [[0, 1], [0, 2], [1, 3], [0, 4], [1, 4], [4, 5], [5, 7], [6, 7], [5, 8], [8, 12], [12, 16], [5, 9], [9, 13], [13, 17], [6, 10], [10, 14], [14, 18], [6, 11], [11, 15], [15, 19]] pose_link_color = palette[[0] * 20] pose_kpt_color = palette[[0] * 20] else: NotImplementedError() if hasattr(model, 'module'): model = model.module img = model.show_result( img, result, skeleton, radius=radius, thickness=thickness, pose_kpt_color=pose_kpt_color, pose_link_color=pose_link_color, kpt_score_thr=kpt_score_thr, bbox_color=bbox_color, show=show, out_file=out_file) return img def process_mmdet_results(mmdet_results, cat_id=1): """Process mmdet results, and return a list of bboxes. Args: mmdet_results (list|tuple): mmdet results. cat_id (int): category id (default: 1 for human) Returns: person_results (list): a list of detected bounding boxes """ if isinstance(mmdet_results, tuple): det_results = mmdet_results[0] else: det_results = mmdet_results bboxes = det_results[cat_id - 1] person_results = [] for bbox in bboxes: person = {} person['bbox'] = bbox person_results.append(person) return person_results