# Copyright (c) OpenMMLab. All rights reserved. from collections import OrderedDict import torch.distributed as dist from torch._utils import (_flatten_dense_tensors, _take_tensors, _unflatten_dense_tensors) def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): """Allreduce parameters as a whole.""" if bucket_size_mb > 0: bucket_size_bytes = bucket_size_mb * 1024 * 1024 buckets = _take_tensors(tensors, bucket_size_bytes) else: buckets = OrderedDict() for tensor in tensors: tp = tensor.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(tensor) buckets = buckets.values() for bucket in buckets: flat_tensors = _flatten_dense_tensors(bucket) dist.all_reduce(flat_tensors) flat_tensors.div_(world_size) for tensor, synced in zip( bucket, _unflatten_dense_tensors(flat_tensors, bucket)): tensor.copy_(synced) def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): """Allreduce gradients. Args: params (list[torch.Parameters]): List of parameters of a model coalesce (bool, optional): Whether allreduce parameters as a whole. Default: True. bucket_size_mb (int, optional): Size of bucket, the unit is MB. Default: -1. """ grads = [ param.grad.data for param in params if param.requires_grad and param.grad is not None ] world_size = dist.get_world_size() if coalesce: _allreduce_coalesced(grads, world_size, bucket_size_mb) else: for tensor in grads: dist.all_reduce(tensor.div_(world_size))