Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..builder import LOSSES | |
class BCELoss(nn.Module): | |
"""Binary Cross Entropy loss.""" | |
def __init__(self, use_target_weight=False, loss_weight=1.): | |
super().__init__() | |
self.criterion = F.binary_cross_entropy | |
self.use_target_weight = use_target_weight | |
self.loss_weight = loss_weight | |
def forward(self, output, target, target_weight=None): | |
"""Forward function. | |
Note: | |
- batch_size: N | |
- num_labels: K | |
Args: | |
output (torch.Tensor[N, K]): Output classification. | |
target (torch.Tensor[N, K]): Target classification. | |
target_weight (torch.Tensor[N, K] or torch.Tensor[N]): | |
Weights across different labels. | |
""" | |
if self.use_target_weight: | |
assert target_weight is not None | |
loss = self.criterion(output, target, reduction='none') | |
if target_weight.dim() == 1: | |
target_weight = target_weight[:, None] | |
loss = (loss * target_weight).mean() | |
else: | |
loss = self.criterion(output, target) | |
return loss * self.loss_weight | |