import re def tracker(args, result_dict, label="", pattern="epoch_step", metric="FID"): if args.report_to == "wandb": import wandb wandb_name = f"[{args.log_metric}]_{args.name}" wandb.init(project=args.tracker_project_name, name=wandb_name, resume="allow", id=wandb_name, tags="metrics") run = wandb.run if pattern == "step": pattern = "sample_steps" elif pattern == "epoch_step": pattern = "step" custom_name = f"custom_{pattern}" run.define_metric(custom_name) # define which metrics will be plotted against it run.define_metric(f"{metric}_{label}", step_metric=custom_name) steps = [] results = [] def extract_value(regex, exp_name): match = re.search(regex, exp_name) if match: return match.group(1) else: return "unknown" for exp_name, result_value in result_dict.items(): if pattern == "step": regex = r".*step(\d+)_scale.*" custom_x = extract_value(regex, exp_name) elif pattern == "sample_steps": regex = r".*step(\d+)_size.*" custom_x = extract_value(regex, exp_name) else: regex = rf"{pattern}(\d+(\.\d+)?)" custom_x = extract_value(regex, exp_name) custom_x = 1 if custom_x == "unknown" else custom_x assert custom_x != "unknown" steps.append(float(custom_x)) results.append(result_value) sorted_data = sorted(zip(steps, results)) steps, results = zip(*sorted_data) for step, result in sorted(zip(steps, results)): run.log({f"{metric}_{label}": result, custom_name: step}) else: print(f"{args.report_to} is not supported")