# πŸ’» How to Inference & Test Metrics (FID, CLIP Score, GenEval, DPG-Bench, etc...) This ToolKit will automatically inference your model and log the metrics results onto wandb as chart for better illustration. We curerntly support: - \[x\] [FID](https://github.com/mseitzer/pytorch-fid) & [CLIP-Score](https://github.com/openai/CLIP) - \[x\] [GenEval](https://github.com/djghosh13/geneval) - \[x\] [DPG-Bench](https://github.com/TencentQQGYLab/ELLA) - \[x\] [ImageReward](https://github.com/THUDM/ImageReward/tree/main) ### 0. Install corresponding env for GenEval and DPG-Bench Make sure you can activate the following envs: - `conda activate geneval`([GenEval](https://github.com/djghosh13/geneval)) - `conda activate dpg`([DGB-Bench](https://github.com/TencentQQGYLab/ELLA)) ### 0.1 Prepare data. Metirc FID & CLIP-Score on [MJHQ-30K](https://huggingface.co/datasets/playgroundai/MJHQ-30K) ```python from huggingface_hub import hf_hub_download hf_hub_download( repo_id="playgroundai/MJHQ-30K", filename="mjhq30k_imgs.zip", local_dir="data/test/PG-eval-data/MJHQ-30K/", repo_type="dataset" ) ``` Unzip mjhq30k_imgs.zip into its per-category folder structure. ``` data/test/PG-eval-data/MJHQ-30K/imgs/ β”œβ”€β”€ animals β”œβ”€β”€ art β”œβ”€β”€ fashion β”œβ”€β”€ food β”œβ”€β”€ indoor β”œβ”€β”€ landscape β”œβ”€β”€ logo β”œβ”€β”€ people β”œβ”€β”€ plants └── vehicles ``` ### 0.2 Prepare checkpoints ```bash huggingface-cli download Efficient-Large-Model/Sana_1600M_1024px --repo-type model --local-dir ./output/Sana_1600M_1024px --local-dir-use-symlinks False ``` ### 1. directly \[Inference and Metric\] a .pth file ```bash # We provide four scripts for evaluating metrics: fid_clipscore_launch=scripts/bash_run_inference_metric.sh geneval_launch=scripts/bash_run_inference_metric_geneval.sh dpg_launch=scripts/bash_run_inference_metric_dpg.sh image_reward_launch=scripts/bash_run_inference_metric_imagereward.sh # Use following format to metric your models: # bash $correspoinding_metric_launch $your_config_file_path $your_relative_pth_file_path # example bash $geneval_launch \ configs/sana_config/1024ms/Sana_1600M_img1024.yaml \ output/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth ``` ### 2. \[Inference and Metric\] a list of .pth files using a txt file You can also write all your pth files of a job in one txt file, eg. [model_paths.txt](../model_paths.txt) ```bash # Use following format to metric your models, gathering in a txt file: # bash $correspoinding_metric_launch $your_config_file_path $your_txt_file_path_containing_pth_path # We suggest follow the file tree structure in our project for robust experiment # example bash scripts/bash_run_inference_metric.sh \ configs/sana_config/1024ms/Sana_1600M_img1024.yaml \ asset/model_paths.txt ``` ### 3. You will get the following data tree. ``` output β”œβ”€β”€your_job_name/ (everything will be saved here) β”‚ β”œβ”€β”€config.yaml β”‚ β”œβ”€β”€train_log.log β”‚ β”œβ”€β”€checkpoints (all checkpoints) β”‚ β”‚ β”œβ”€β”€epoch_1_step_6666.pth β”‚ β”‚ β”œβ”€β”€epoch_1_step_8888.pth β”‚ β”‚ β”œβ”€β”€...... β”‚ β”œβ”€β”€vis (all visualization result dirs) β”‚ β”‚ β”œβ”€β”€visualization_file_name β”‚ β”‚ β”‚ β”œβ”€β”€xxxxxxx.jpg β”‚ β”‚ β”‚ β”œβ”€β”€...... β”‚ β”‚ β”œβ”€β”€visualization_file_name2 β”‚ β”‚ β”‚ β”œβ”€β”€xxxxxxx.jpg β”‚ β”‚ β”‚ β”œβ”€β”€...... β”‚ β”œβ”€β”€...... β”‚ β”œβ”€β”€metrics (all metrics testing related files) β”‚ β”‚ β”œβ”€β”€model_paths.txt Optional(πŸ‘ˆ)(relative path of testing ckpts) β”‚ β”‚ β”‚ β”œβ”€β”€output/your_job_name/checkpoings/epoch_1_step_6666.pth β”‚ β”‚ β”‚ β”œβ”€β”€output/your_job_name/checkpoings/epoch_1_step_8888.pth β”‚ β”‚ β”œβ”€β”€fid_img_paths.txt Optional(πŸ‘ˆ)(name of testing img_dir in vis) β”‚ β”‚ β”‚ β”œβ”€β”€visualization_file_name β”‚ β”‚ β”‚ β”œβ”€β”€visualization_file_name2 β”‚ β”‚ β”œβ”€β”€cached_img_paths.txt Optional(πŸ‘ˆ) β”‚ β”‚ β”œβ”€β”€...... ```