sana-zero / diffusion /data /datasets /sana_data_multi_scale.py
gen6scp's picture
Patched codes for ZeroGPU
d643072
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import os
import random
import numpy as np
import torch
from torchvision import transforms as T
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from diffusion.data.builder import DATASETS
from diffusion.data.datasets.sana_data import SanaWebDataset
from diffusion.data.datasets.utils import *
from diffusion.data.wids import lru_json_load
def get_closest_ratio(height: float, width: float, ratios: dict):
aspect_ratio = height / width
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
return ratios[closest_ratio], float(closest_ratio)
@DATASETS.register_module()
class SanaWebDatasetMS(SanaWebDataset):
def __init__(
self,
data_dir="",
meta_path=None,
cache_dir="/cache/data/sana-webds-meta",
max_shards_to_load=None,
transform=None,
resolution=256,
sample_subset=None,
load_vae_feat=False,
load_text_feat=False,
input_size=32,
patch_size=2,
max_length=300,
config=None,
caption_proportion=None,
sort_dataset=False,
num_replicas=None,
external_caption_suffixes=None,
external_clipscore_suffixes=None,
clip_thr=0.0,
clip_thr_temperature=1.0,
vae_downsample_rate=32,
**kwargs,
):
super().__init__(
data_dir=data_dir,
meta_path=meta_path,
cache_dir=cache_dir,
max_shards_to_load=max_shards_to_load,
transform=transform,
resolution=resolution,
sample_subset=sample_subset,
load_vae_feat=load_vae_feat,
load_text_feat=load_text_feat,
input_size=input_size,
patch_size=patch_size,
max_length=max_length,
config=config,
caption_proportion=caption_proportion,
sort_dataset=sort_dataset,
num_replicas=num_replicas,
external_caption_suffixes=external_caption_suffixes,
external_clipscore_suffixes=external_clipscore_suffixes,
clip_thr=clip_thr,
clip_thr_temperature=clip_thr_temperature,
vae_downsample_rate=32,
**kwargs,
)
self.base_size = int(kwargs["aspect_ratio_type"].split("_")[-1])
self.aspect_ratio = eval(kwargs.pop("aspect_ratio_type")) # base aspect ratio
self.ratio_index = {}
self.ratio_nums = {}
self.interpolate_model = InterpolationMode.BICUBIC
self.interpolate_model = (
InterpolationMode.BICUBIC
if self.aspect_ratio not in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]
else InterpolationMode.LANCZOS
)
for k, v in self.aspect_ratio.items():
self.ratio_index[float(k)] = []
self.ratio_nums[float(k)] = 0
self.vae_downsample_rate = vae_downsample_rate
def __getitem__(self, idx):
for _ in range(10):
try:
data = self.getdata(idx)
return data
except Exception as e:
print(f"Error details: {str(e)}")
idx = random.choice(self.ratio_index[self.closest_ratio])
raise RuntimeError("Too many bad data.")
def getdata(self, idx):
data = self.dataset[idx]
info = data[".json"]
self.key = data["__key__"]
dataindex_info = {
"index": data["__index__"],
"shard": "/".join(data["__shard__"].rsplit("/", 2)[-2:]),
"shardindex": data["__shardindex__"],
}
# external json file
for suffix in self.external_caption_suffixes:
caption_json_path = data["__shard__"].replace(".tar", f"{suffix}.json")
if os.path.exists(caption_json_path):
try:
caption_json = lru_json_load(caption_json_path)
except:
caption_json = {}
if self.key in caption_json:
info.update(caption_json[self.key])
data_info = {}
ori_h, ori_w = info["height"], info["width"]
# Calculate the closest aspect ratio and resize & crop image[w, h]
closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
closest_size = list(map(lambda x: int(x), closest_size))
self.closest_ratio = closest_ratio
data_info["img_hw"] = torch.tensor([ori_h, ori_w], dtype=torch.float32)
data_info["aspect_ratio"] = closest_ratio
caption_type, caption_clipscore = self.weighted_sample_clipscore(data, info)
caption_type = caption_type if caption_type in info else self.default_prompt
txt_fea = "" if info[caption_type] is None else info[caption_type]
if self.load_vae_feat:
img = data[".npy"]
if len(img.shape) == 4 and img.shape[0] == 1:
img = img[0]
h, w = (img.shape[1], img.shape[2])
assert h == int(closest_size[0] // self.vae_downsample_rate) and w == int(
closest_size[1] // self.vae_downsample_rate
), f"h: {h}, w: {w}, ori_hw: {closest_size}, data_info: {dataindex_info}"
else:
img = data[".png"] if ".png" in data else data[".jpg"]
if closest_size[0] / ori_h > closest_size[1] / ori_w:
resize_size = closest_size[0], int(ori_w * closest_size[0] / ori_h)
else:
resize_size = int(ori_h * closest_size[1] / ori_w), closest_size[1]
self.transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB")),
T.Resize(resize_size, interpolation=self.interpolate_model), # Image.BICUBIC
T.CenterCrop(closest_size),
T.ToTensor(),
T.Normalize([0.5], [0.5]),
]
)
if idx not in self.ratio_index[closest_ratio]:
self.ratio_index[closest_ratio].append(idx)
if self.transform:
img = self.transform(img)
attention_mask = torch.ones(1, 1, self.max_length, dtype=torch.int16) # 1x1xT
if self.load_text_feat:
npz_path = f"{self.key}.npz"
txt_info = np.load(npz_path)
txt_fea = torch.from_numpy(txt_info["caption_feature"]) # 1xTx4096
if "attention_mask" in txt_info:
attention_mask = torch.from_numpy(txt_info["attention_mask"])[None]
# make sure the feature length are the same
if txt_fea.shape[1] != self.max_length:
txt_fea = torch.cat([txt_fea, txt_fea[:, -1:].repeat(1, self.max_length - txt_fea.shape[1], 1)], dim=1)
attention_mask = torch.cat(
[attention_mask, torch.zeros(1, 1, self.max_length - attention_mask.shape[-1])], dim=-1
)
return (
img,
txt_fea,
attention_mask.to(torch.int16),
data_info,
idx,
caption_type,
dataindex_info,
str(caption_clipscore),
)
def __len__(self):
return len(self.dataset)
@DATASETS.register_module()
class DummyDatasetMS(SanaWebDatasetMS):
def __init__(self, **kwargs):
self.base_size = int(kwargs["aspect_ratio_type"].split("_")[-1])
self.aspect_ratio = eval(kwargs.pop("aspect_ratio_type")) # base aspect ratio
self.ratio_index = {}
self.ratio_nums = {}
self.interpolate_model = InterpolationMode.BICUBIC
self.interpolate_model = (
InterpolationMode.BICUBIC
if self.aspect_ratio not in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]
else InterpolationMode.LANCZOS
)
for k, v in self.aspect_ratio.items():
self.ratio_index[float(k)] = []
self.ratio_nums[float(k)] = 0
self.ori_imgs_nums = 1_000_000
self.height = 384
self.width = 672
def __getitem__(self, idx):
img = torch.randn((3, self.height, self.width))
txt_fea = "The image depicts a young woman standing in the middle of a street, leaning against a silver car. She is dressed in a stylish outfit consisting of a blue blouse and black pants. Her hair is long and dark, and she is looking directly at the camera with a confident expression. The street is lined with colorful buildings, and the trees have autumn leaves, suggesting the season is fall. The lighting is warm, with sunlight casting long shadows on the street. There are a few people in the background, and the overall atmosphere is vibrant and lively."
attention_mask = torch.ones(1, 1, 300, dtype=torch.int16) # 1x1xT
data_info = {"img_hw": torch.tensor([816.0, 1456.0]), "aspect_ratio": 0.57}
idx = 2500
caption_type = self.default_prompt
dataindex_info = {"index": 2500, "shard": "data_for_test_after_change/00000000.tar", "shardindex": 2500}
return img, txt_fea, attention_mask, data_info, idx, caption_type, dataindex_info
def __len__(self):
return self.ori_imgs_nums
def get_data_info(self, idx):
return {"height": self.height, "width": self.width, "version": "1.0", "key": "dummpy_key"}
if __name__ == "__main__":
from torch.utils.data import DataLoader
from diffusion.data.datasets.utils import ASPECT_RATIO_1024
from diffusion.data.transforms import get_transform
image_size = 256
transform = get_transform("default_train", image_size)
data_dir = ["data/debug_data_train/debug_data"]
for data_path in data_dir:
train_dataset = SanaWebDatasetMS(data_dir=data_path, resolution=image_size, transform=transform, max_length=300)
dataloader = DataLoader(train_dataset, batch_size=1, shuffle=False, num_workers=4)
for data in tqdm(dataloader):
break
print(dataloader.dataset.index_info)