File size: 3,319 Bytes
2f3144c
 
 
 
 
 
 
 
3ef82d2
6017a53
2f3144c
3ef82d2
 
 
 
 
3077ea4
2f3144c
3ef82d2
 
2f3144c
 
3ef82d2
2f3144c
 
 
 
 
 
 
 
6017a53
 
bc401e8
2f3144c
 
 
6017a53
2f3144c
6017a53
2f3144c
 
 
6017a53
2f3144c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef82d2
2f3144c
 
 
 
 
3ef82d2
2f3144c
 
 
 
2be66f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import os
import traceback
import spaces
import time

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# Load the Byaldi and Qwen2-VL models
rag_model = RAGMultiModalModel.from_pretrained("vidore/colpali")  # Do not move Byaldi to GPU
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16
).to(device)  # Move Qwen2-VL to GPU

# Processor for Qwen2-VL
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True)

@spaces.GPU  # Decorate the function for GPU management
def ocr_and_extract(image, text_query):
    try:
        # Save the uploaded image temporarily
        temp_image_path = "temp_image.jpg"
        image.save(temp_image_path)

        # Generate a unique index name using the current timestamp
        unique_index_name = f"image_index_{int(time.time())}"

        # Index the image with Byaldi
        rag_model.index(
            input_path=temp_image_path,
            index_name=unique_index_name,  # Use the unique index name
            store_collection_with_index=False,
            overwrite=True  # Ensure the index is overwritten if it already exists
        )

        # Perform the search query on the indexed image
        results = rag_model.search(text_query, k=1, index_name=unique_index_name)

        # Prepare the input for Qwen2-VL
        image_data = Image.open(temp_image_path)

        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image_data},
                    {"type": "text", "text": text_query},
                ],
            }
        ]

        # Process the message and prepare for Qwen2-VL
        text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, _ = process_vision_info(messages)

        # Move the image inputs and processor outputs to CUDA
        inputs = processor(
            text=[text_input],
            images=image_inputs,
            padding=True,
            return_tensors="pt",
        ).to(device)

        # Generate the output with Qwen2-VL
        generated_ids = qwen_model.generate(**inputs, max_new_tokens=50)
        output_text = processor.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

        # Clean up the temporary file
        os.remove(temp_image_path)

        return output_text[0]

    except Exception as e:
        error_message = str(e)
        traceback.print_exc()
        return f"Error: {error_message}"

# Gradio interface for image input
iface = gr.Interface(
    fn=ocr_and_extract,
    inputs=[
        gr.Image(type="pil"),
        gr.Textbox(label="Enter your query (optional)"),
    ],
    outputs="text",
    title="Image OCR with Byaldi + Qwen2-VL",
    description="Upload an image (JPEG/PNG) containing Hindi and English text for OCR.",
)

# Launch the Gradio app
iface.launch()