MediVox / patientvoice.py
gauravgulati619's picture
feat: update to Gemini, add optional inputs, and apply new theme
ef46851
import logging
import speech_recognition as sr
from pydub import AudioSegment
from io import BytesIO
import os
import google.generativeai as genai
from dotenv import load_dotenv
import base64
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def record_audio(file_path, timeout=20, phrase_time_limit=None):
"""
Simplified function to record audio from the microphone and save it as an MP3 file.
Args:
file_path (str): Path to save the recorded audio file.
timeout (int): Maximum time to wait for a phrase to start (in seconds).
phrase_time_lfimit (int): Maximum time for the phrase to be recorded (in seconds).
"""
recognizer = sr.Recognizer()
try:
with sr.Microphone() as source:
logging.info("Adjusting for ambient noise...")
recognizer.adjust_for_ambient_noise(source, duration=1)
logging.info("Start speaking now...")
# Record the audio
audio_data = recognizer.listen(source, timeout=timeout, phrase_time_limit=phrase_time_limit)
logging.info("Recording complete.")
# Convert the recorded audio to an MP3 file
wav_data = audio_data.get_wav_data()
audio_segment = AudioSegment.from_wav(BytesIO(wav_data))
audio_segment.export(file_path, format="mp3", bitrate="128k")
logging.info(f"Audio saved to {file_path}")
except Exception as e:
logging.error(f"An error occurred: {e}")
load_dotenv()
GOOGLE_AI_STUDIO_API_KEY = os.environ.get("GOOGLE_AI_STUDIO_API_KEY")
stt_model = "whisper-large-v3" # Keep for compatibility
def transcribe_with_groq(stt_model, audio_filepath, GOOGLE_AI_STUDIO_API_KEY=None):
api_key = GOOGLE_AI_STUDIO_API_KEY or os.environ.get("GOOGLE_AI_STUDIO_API_KEY")
genai.configure(api_key=api_key)
# Setup Gemini model
model = genai.GenerativeModel("gemini-2.0-flash")
# Read audio file
with open(audio_filepath, "rb") as audio_file:
audio_data = audio_file.read()
# Create content for generation
contents = [
{
"role": "user",
"parts": [
{"text": "Please transcribe this audio accurately. Output only the transcription with no additional text."},
{"inline_data": {"mime_type": "audio/mp3", "data": base64.b64encode(audio_data).decode("utf-8")}}
]
}
]
# Generate transcription
response = model.generate_content(contents)
return response.text