from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import streamlit as st from PyPDF2 import PdfReader import docx import os import re # Load NLLB model and tokenizer @st.cache_resource def load_translation_model(): model_name = "facebook/nllb-200-distilled-600M" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) return tokenizer, model # Initialize model @st.cache_resource def initialize_models(): tokenizer, model = load_translation_model() return {"nllb": (tokenizer, model)} # Function to extract text from different file types def extract_text(file): ext = os.path.splitext(file.name)[1].lower() if ext == ".pdf": reader = PdfReader(file) text = "" for page in reader.pages: text += page.extract_text() + "\n" return text elif ext == ".docx": doc = docx.Document(file) text = "" for para in doc.paragraphs: text += para.text + "\n" return text elif ext == ".txt": return file.read().decode("utf-8") else: raise ValueError("Unsupported file format. Please upload PDF, DOCX, or TXT files.") # Translation function def translate_text(text, src_lang, tgt_lang, models): if src_lang == tgt_lang: return text # Language codes for NLLB lang_map = {"en": "eng_Latn", "hi": "hin_Deva", "mr": "mar_Deva"} if src_lang not in lang_map or tgt_lang not in lang_map: return "Error: Unsupported language combination" tgt_lang_code = lang_map[tgt_lang] tokenizer, model = models["nllb"] # Preprocess for idioms preprocessed_text = preprocess_idioms(text, src_lang, tgt_lang) # Split text into manageable chunks sentences = preprocessed_text.split("\n") translated_text = "" for sentence in sentences: if sentence.strip(): inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=512) # Use lang_code_to_id instead of get_lang_id translated = model.generate( **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang_code], max_length=512 ) translated_sentence = tokenizer.decode(translated[0], skip_special_tokens=True) translated_text += translated_sentence + "\n" return translated_text # Function to save text as a file def save_text_to_file(text, original_filename, prefix="translated"): output_filename = f"{prefix}_{os.path.basename(original_filename)}.txt" with open(output_filename, "w", encoding="utf-8") as f: f.write(text) return output_filename # Main processing function def process_document(file, source_lang, target_lang, models): try: # Extract text from uploaded file text = extract_text(file) # Translate the text translated_text = translate_text(text, source_lang, target_lang, models) # Save the result (success or error) to a file if translated_text.startswith("Error:"): output_file = save_text_to_file(translated_text, file.name, prefix="error") else: output_file = save_text_to_file(translated_text, file.name) return output_file, translated_text except Exception as e: # Save error message to a file error_message = f"Error: {str(e)}" output_file = save_text_to_file(error_message, file.name, prefix="error") return output_file, error_message # Streamlit interface def main(): st.title("Document Translator (NLLB-200)") st.write("Upload a document (PDF, DOCX, or TXT) and select source and target languages (English, Hindi, Marathi).") # Initialize models models = initialize_models() # File uploader uploaded_file = st.file_uploader("Upload Document", type=["pdf", "docx", "txt"]) # Language selection col1, col2 = st.columns(2) with col1: source_lang = st.selectbox("Source Language", ["en", "hi", "mr"], index=0) with col2: target_lang = st.selectbox("Target Language", ["en", "hi", "mr"], index=1) if uploaded_file is not None and st.button("Translate"): with st.spinner("Translating..."): output_file, result_text = process_document(uploaded_file, source_lang, target_lang, models) # Display result st.text_area("Translated Text", result_text, height=300) # Provide download button with open(output_file, "rb") as file: st.download_button( label="Download Translated Document", data=file, file_name=os.path.basename(output_file), mime="text/plain" ) if __name__ == "__main__": main()