Spaces:
Build error
Build error
File size: 10,212 Bytes
2ea2438 67419d9 c124a1a 67419d9 c98f2e3 1337d1b 4174664 2ea2438 c124a1a 2ea2438 ed75acb 2ea2438 ed75acb 2ea2438 ed75acb 2ea2438 77a6efe 2ea2438 77a6efe 2ea2438 c124a1a 5e3207d c124a1a bcda6d5 c124a1a bcda6d5 c124a1a 5e3207d 2ea2438 c124a1a 5e3207d 2ea2438 c124a1a 2ea2438 8b4e117 2ea2438 8b4e117 2ea2438 8b4e117 2ea2438 8b4e117 2ea2438 8b4e117 ed75acb 8b4e117 2ea2438 8b4e117 2ea2438 8b4e117 2ea2438 8b4e117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import streamlit as st
from PyPDF2 import PdfReader
import docx
import os
import re
# Load NLLB model and tokenizer
@st.cache_resource
def load_translation_model():
model_name = "facebook/nllb-200-distilled-600M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return tokenizer, model
# Initialize model
@st.cache_resource
def initialize_models():
tokenizer, model = load_translation_model()
return {"nllb": (tokenizer, model)}
# Enhanced idiom mapping with more comprehensive translations
def preprocess_idioms(text, src_lang, tgt_lang):
if src_lang == "en" and tgt_lang == "hi":
idiom_map = {
# Basic phrases
"no piece of cake": "कोई आसान काम नहीं",
"piece of cake": "बहुत आसान काम",
"bite the bullet": "दांतों तले उंगली दबाना",
"tackle it head-on": "सीधे मुकाबला करना",
"fell into place": "सब कुछ ठीक हो गया",
"see the light at the end of the tunnel": "मुश्किलों के अंत में उम्मीद की किरण दिखना",
"with a little perseverance": "थोड़े से धैर्य से",
# Additional common idioms
"break a leg": "बहुत बहुत शुभकामनाएं",
"hit the nail on the head": "बिल्कुल सही बात कहना",
"once in a blue moon": "बहुत कम, कभी-कभार",
"under the weather": "तबीयत ठीक नहीं",
"cost an arm and a leg": "बहुत महंगा",
"beating around the bush": "इधर-उधर की बात करना",
"call it a day": "काम समाप्त करना",
"burn the midnight oil": "रात-रात भर जागकर काम करना",
"get the ball rolling": "शुरुआत करना",
"pull yourself together": "खुद को संभालो",
"shoot yourself in the foot": "अपना ही नुकसान करना",
"take it with a grain of salt": "संदेह से लेना",
"the last straw": "सहनशीलता की आखिरी सीमा",
"time flies": "समय पंख लगाकर उड़ता है",
"wrap your head around": "समझने की कोशिश करना",
"cut corners": "काम में छोटा रास्ता अपनाना",
"back to square one": "फिर से शुरू से",
"blessing in disguise": "छिपा हुआ वरदान",
"cry over spilled milk": "बीती बात पर पछताना",
"keep your chin up": "हिम्मत रखना",
# Work-related idioms
"think outside the box": "नए तरीके से सोचना",
"raise the bar": "मानक ऊंचा करना",
"learning curve": "सीखने की प्रक्रिया",
"up and running": "चालू और कार्यरत",
"back to the drawing board": "फिर से योजना बनाना",
# Project-related phrases
"running into issues": "समस्याओं का सामना करना",
"iron out the bugs": "खामियां दूर करना",
"in the pipeline": "विचाराधीन",
"moving forward": "आगे बढ़ते हुए",
"touch base": "संपर्क में रहना",
# Technical phrases
"user-friendly": "उपयोगकर्ता के अनुकूल",
"cutting-edge": "अत्याधुनिक",
"state of the art": "अत्याधुनिक तकनीक",
"proof of concept": "व्यवहार्यता का प्रमाण",
"game changer": "खेल बदलने वाला"
}
# Sort idioms by length (longest first) to handle overlapping phrases
sorted_idioms = sorted(idiom_map.keys(), key=len, reverse=True)
# Create a single regex pattern for all idioms
pattern = '|'.join(map(re.escape, sorted_idioms))
def replace_idiom(match):
return idiom_map[match.group(0).lower()]
# Replace all idioms in one pass, case-insensitive
text = re.sub(pattern, replace_idiom, text, flags=re.IGNORECASE)
return text
# Function to extract text from different file types
def extract_text(file):
ext = os.path.splitext(file.name)[1].lower()
if ext == ".pdf":
reader = PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text
elif ext == ".docx":
doc = docx.Document(file)
text = ""
for para in doc.paragraphs:
text += para.text + "\n"
return text
elif ext == ".txt":
return file.read().decode("utf-8")
else:
raise ValueError("Unsupported file format. Please upload PDF, DOCX, or TXT files.")
# Translation function with improved chunking and fixed tokenizer issue
def translate_text(text, src_lang, tgt_lang, models):
if src_lang == tgt_lang:
return text
# Language codes for NLLB
lang_map = {"en": "eng_Latn", "hi": "hin_Deva", "mr": "mar_Deva"}
if src_lang not in lang_map or tgt_lang not in lang_map:
return "Error: Unsupported language combination"
tgt_lang_code = lang_map[tgt_lang]
tokenizer, model = models["nllb"]
# Preprocess for idioms
preprocessed_text = preprocess_idioms(text, src_lang, tgt_lang)
# Improved chunking: Split by sentences while preserving context
chunks = []
current_chunk = ""
for sentence in re.split('([.!?।]+)', preprocessed_text):
if sentence.strip():
if len(current_chunk) + len(sentence) < 450: # Leave room for tokenization
current_chunk += sentence
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
translated_text = ""
for chunk in chunks:
if chunk.strip():
# Add target language token to the beginning of the input
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
# Get the token ID for the target language
tgt_lang_id = tokenizer.convert_tokens_to_ids(tgt_lang_code)
translated = model.generate(
**inputs,
forced_bos_token_id=tgt_lang_id, # Fixed: Using convert_tokens_to_ids instead of lang_code_to_id
max_length=512,
num_beams=5,
length_penalty=1.0,
no_repeat_ngram_size=3
)
translated_chunk = tokenizer.decode(translated[0], skip_special_tokens=True)
translated_text += translated_chunk + " "
return translated_text.strip()
# Function to save text as a file
def save_text_to_file(text, original_filename, prefix="translated"):
output_filename = f"{prefix}_{os.path.basename(original_filename)}.txt"
with open(output_filename, "w", encoding="utf-8") as f:
f.write(text)
return output_filename
# Main processing function
def process_document(file, source_lang, target_lang, models):
try:
# Extract text from uploaded file
text = extract_text(file)
# Translate the text
translated_text = translate_text(text, source_lang, target_lang, models)
# Save the result
if translated_text.startswith("Error:"):
output_file = save_text_to_file(translated_text, file.name, prefix="error")
else:
output_file = save_text_to_file(translated_text, file.name)
return output_file, translated_text
except Exception as e:
error_message = f"Error: {str(e)}"
output_file = save_text_to_file(error_message, file.name, prefix="error")
return output_file, error_message
# Streamlit interface
def main():
st.title("Document Translator (NLLB-200)")
st.write("Upload a document (PDF, DOCX, or TXT) and select source and target languages (English, Hindi, Marathi).")
# Initialize models
models = initialize_models()
# File uploader
uploaded_file = st.file_uploader("Upload Document", type=["pdf", "docx", "txt"])
# Language selection
col1, col2 = st.columns(2)
with col1:
source_lang = st.selectbox("Source Language", ["en", "hi", "mr"], index=0)
with col2:
target_lang = st.selectbox("Target Language", ["en", "hi", "mr"], index=1)
if uploaded_file is not None and st.button("Translate"):
with st.spinner("Translating..."):
output_file, result_text = process_document(uploaded_file, source_lang, target_lang, models)
# Display result
st.text_area("Translated Text", result_text, height=300)
# Provide download button
with open(output_file, "rb") as file:
st.download_button(
label="Download Translated Document",
data=file,
file_name=os.path.basename(output_file),
mime="text/plain"
)
if _name_ == "_main_":
main() |