Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,132 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import pytesseract
|
5 |
+
from PIL import Image
|
6 |
+
import PyPDF2
|
7 |
+
import io
|
8 |
+
import requests
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Azure Translator API Configuration
|
12 |
+
AZURE_TRANSLATOR_KEY = "your_azure_key"
|
13 |
+
AZURE_TRANSLATOR_ENDPOINT = "https://api.cognitive.microsofttranslator.com/translate"
|
14 |
+
AZURE_TRANSLATOR_REGION = "your_region"
|
15 |
+
|
16 |
+
# Specify the model
|
17 |
+
MODEL_NAME = "google/gemma-2b-it"
|
18 |
+
|
19 |
+
class LegalEaseAssistant:
|
20 |
+
def __init__(self, model_name=MODEL_NAME):
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_name,
|
24 |
+
device_map="cpu",
|
25 |
+
load_in_8bit=True,
|
26 |
+
torch_dtype=torch.float16
|
27 |
+
)
|
28 |
+
|
29 |
+
def extract_text_from_input(self, input_file):
|
30 |
+
if isinstance(input_file, str):
|
31 |
+
return input_file
|
32 |
+
|
33 |
+
if isinstance(input_file, Image.Image):
|
34 |
+
try:
|
35 |
+
return pytesseract.image_to_string(input_file)
|
36 |
+
except Exception as e:
|
37 |
+
return f"Error extracting text from image: {str(e)}"
|
38 |
+
|
39 |
+
if hasattr(input_file, 'name') and input_file.name.lower().endswith('.pdf'):
|
40 |
+
try:
|
41 |
+
pdf_reader = PyPDF2.PdfReader(input_file)
|
42 |
+
text = ""
|
43 |
+
for page in pdf_reader.pages:
|
44 |
+
text += page.extract_text() + "\n\n"
|
45 |
+
return text
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error extracting text from PDF: {str(e)}"
|
48 |
+
|
49 |
+
return "Unsupported input type"
|
50 |
+
|
51 |
+
def generate_response(self, input_file, task_type):
|
52 |
+
text = self.extract_text_from_input(input_file)
|
53 |
+
|
54 |
+
task_prompts = {
|
55 |
+
"simplify": f"Simplify the following legal text:\n\n{text}\n\nSimplified explanation:",
|
56 |
+
"summary": f"Provide a concise summary:\n\n{text}\n\nSummary:",
|
57 |
+
"key_terms": f"Identify key legal terms:\n\n{text}\n\nKey Terms:",
|
58 |
+
"risk": f"Perform a risk analysis:\n\n{text}\n\nRisk Assessment:"
|
59 |
+
}
|
60 |
+
|
61 |
+
prompt = task_prompts.get(task_type, f"Analyze the following text:\n\n{text}\n\nAnalysis:")
|
62 |
+
|
63 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
64 |
+
outputs = self.model.generate(
|
65 |
+
**inputs,
|
66 |
+
max_new_tokens=300,
|
67 |
+
num_return_sequences=1,
|
68 |
+
do_sample=True,
|
69 |
+
temperature=0.7,
|
70 |
+
top_p=0.9
|
71 |
+
)
|
72 |
+
|
73 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
+
response_parts = response.split(prompt.split("\n\n")[-1])
|
75 |
+
return response_parts[-1].strip() if len(response_parts) > 1 else response.strip()
|
76 |
+
|
77 |
+
def translate_text(self, text, target_language):
|
78 |
+
if not text:
|
79 |
+
return "No text provided for translation."
|
80 |
+
|
81 |
+
params = {'api-version': '3.0', 'to': target_language}
|
82 |
+
headers = {
|
83 |
+
'Ocp-Apim-Subscription-Key': AZURE_TRANSLATOR_KEY,
|
84 |
+
'Ocp-Apim-Subscription-Region': AZURE_TRANSLATOR_REGION,
|
85 |
+
'Content-Type': 'application/json'
|
86 |
+
}
|
87 |
+
body = [{'text': text}]
|
88 |
+
|
89 |
+
try:
|
90 |
+
response = requests.post(AZURE_TRANSLATOR_ENDPOINT, params=params, headers=headers, json=body)
|
91 |
+
response_data = response.json()
|
92 |
+
return response_data[0]['translations'][0]['text']
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error translating text: {str(e)}"
|
95 |
+
|
96 |
+
# Create Gradio Interface
|
97 |
+
def create_interface():
|
98 |
+
assistant = LegalEaseAssistant()
|
99 |
+
|
100 |
+
with gr.Blocks(title="LegalEase: AI Legal Assistant") as demo:
|
101 |
+
gr.Markdown("# 📜 LegalEase: AI-Powered Legal Document Assistant")
|
102 |
+
|
103 |
+
with gr.Tabs():
|
104 |
+
for task_name, task_type in [("Simplify Language", "simplify"), ("Document Summary", "summary"),
|
105 |
+
("Key Terms", "key_terms"), ("Risk Analysis", "risk")]:
|
106 |
+
with gr.Tab(task_name):
|
107 |
+
with gr.Row():
|
108 |
+
input_file = gr.File(file_types=['txt', 'pdf', 'image'], label="Upload Document")
|
109 |
+
input_text = gr.Textbox(label="Or Paste Text", lines=3)
|
110 |
+
output_text = gr.Textbox(label="Generated Output", lines=6)
|
111 |
+
|
112 |
+
language_dropdown = gr.Dropdown(choices=["en", "hi", "mr"], value="en", label="Translate To")
|
113 |
+
translated_output = gr.Textbox(label="Translated Output", lines=6)
|
114 |
+
btn = gr.Button(f"Generate {task_name}")
|
115 |
+
|
116 |
+
def handler(file, text, language):
|
117 |
+
input_source = file or text
|
118 |
+
if not input_source:
|
119 |
+
return "", ""
|
120 |
+
generated_text = assistant.generate_response(input_source, task_type)
|
121 |
+
translated_text = assistant.translate_text(generated_text, language) if language != "en" else generated_text
|
122 |
+
return generated_text, translated_text
|
123 |
+
|
124 |
+
btn.click(fn=handler, inputs=[input_file, input_text, language_dropdown], outputs=[output_text, translated_output])
|
125 |
+
|
126 |
+
return demo
|
127 |
+
|
128 |
+
# Create and launch the app
|
129 |
+
demo = create_interface()
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
demo.launch()
|