import streamlit as st import numpy as np import torch import cv2 from PIL import Image from torchvision import transforms from cloth_segmentation.networks.u2net import U2NET # ---------------------- MODEL LOAD ---------------------- # @st.cache_resource def load_model(): model_path = "cloth_segmentation/networks/u2net.pth" model = U2NET(3, 1) state_dict = torch.load(model_path, map_location=torch.device('cpu')) state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} model.load_state_dict(state_dict) model.eval() return model model = load_model() # ---------------------- UTILITY FUNCTIONS ---------------------- # def refine_mask(mask): close_kernel = np.ones((5, 5), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) erode_kernel = np.ones((3, 3), np.uint8) mask = cv2.erode(mask, erode_kernel, iterations=1) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) mask = cv2.GaussianBlur(mask, (5, 5), 1.5) return mask def segment_dress(image_np): transform_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize((320, 320)) ]) image = Image.fromarray(image_np).convert("RGB") input_tensor = transform_pipeline(image).unsqueeze(0) with torch.no_grad(): output = model(input_tensor)[0][0].squeeze().cpu().numpy() output = (output - output.min()) / (output.max() - output.min() + 1e-8) adaptive_thresh = np.mean(output) + 0.2 dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255 dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST) return refine_mask(dress_mask) def apply_grabcut(image_np, dress_mask): bgd_model = np.zeros((1, 65), np.float64) fgd_model = np.zeros((1, 65), np.float64) mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8') coords = cv2.findNonZero(dress_mask) if coords is not None: x, y, w, h = cv2.boundingRect(coords) rect = (x, y, w, h) cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK) refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8") return refine_mask(refined_mask) def recolor_dress(image_np, dress_mask, target_color): target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) dress_pixels = img_lab[dress_mask > 0] if len(dress_pixels) == 0: return image_np mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0) a_shift = target_color_lab[1] - mean_A b_shift = target_color_lab[2] - mean_B img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255) img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255) img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB) feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7) lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7 adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8) return (image_np * (1 - adaptive_feather[..., None] / 255) + img_recolored * (adaptive_feather[..., None] / 255)).astype(np.uint8) def change_dress_color(img, color): color_map = { "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), "Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255), "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255), "Black": (0, 0, 0) } new_color_bgr = color_map.get(color, (0, 0, 255)) img_np = np.array(img) try: dress_mask = segment_dress(img_np) if np.sum(dress_mask) < 1000: return img dress_mask = apply_grabcut(img_np, dress_mask) img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr) return Image.fromarray(img_recolored) except Exception as e: st.error(f"Error processing image: {str(e)}") return img # ---------------------- STREAMLIT UI ---------------------- # st.title("👗 AI Dress Color Changer") st.markdown("Upload a dress image and select a new color for realistic recoloring") uploaded_img = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"]) color_option = st.selectbox("Choose a Color", [ "Red", "Blue", "Green", "Yellow", "Purple", "Orange", "Cyan", "Magenta", "White", "Black" ]) if uploaded_img: image = Image.open(uploaded_img).convert("RGB") st.image(image, caption="Original Image", use_column_width=True) if st.button("Recolor Dress"): with st.spinner("Processing..."): result = change_dress_color(image, color_option) st.image(result, caption="Recolored Dress", use_column_width=True)