gaur3009 commited on
Commit
464e64a
·
verified ·
1 Parent(s): e18a5e5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -0
app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import torch
4
+ import cv2
5
+ from PIL import Image
6
+ from torchvision import transforms
7
+ from cloth_segmentation.networks.u2net import U2NET
8
+
9
+ # ---------------------- MODEL LOAD ---------------------- #
10
+ @st.cache_resource
11
+ def load_model():
12
+ model_path = "cloth_segmentation/networks/u2net.pth"
13
+ model = U2NET(3, 1)
14
+ state_dict = torch.load(model_path, map_location=torch.device('cpu'))
15
+ state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
16
+ model.load_state_dict(state_dict)
17
+ model.eval()
18
+ return model
19
+
20
+ model = load_model()
21
+
22
+ # ---------------------- UTILITY FUNCTIONS ---------------------- #
23
+ def refine_mask(mask):
24
+ close_kernel = np.ones((5, 5), np.uint8)
25
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
26
+ erode_kernel = np.ones((3, 3), np.uint8)
27
+ mask = cv2.erode(mask, erode_kernel, iterations=1)
28
+ mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
29
+ mask = cv2.GaussianBlur(mask, (5, 5), 1.5)
30
+ return mask
31
+
32
+ def segment_dress(image_np):
33
+ transform_pipeline = transforms.Compose([
34
+ transforms.ToTensor(),
35
+ transforms.Resize((320, 320))
36
+ ])
37
+ image = Image.fromarray(image_np).convert("RGB")
38
+ input_tensor = transform_pipeline(image).unsqueeze(0)
39
+ with torch.no_grad():
40
+ output = model(input_tensor)[0][0].squeeze().cpu().numpy()
41
+ output = (output - output.min()) / (output.max() - output.min() + 1e-8)
42
+ adaptive_thresh = np.mean(output) + 0.2
43
+ dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255
44
+ dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), interpolation=cv2.INTER_NEAREST)
45
+ return refine_mask(dress_mask)
46
+
47
+ def apply_grabcut(image_np, dress_mask):
48
+ bgd_model = np.zeros((1, 65), np.float64)
49
+ fgd_model = np.zeros((1, 65), np.float64)
50
+ mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8')
51
+ coords = cv2.findNonZero(dress_mask)
52
+ if coords is not None:
53
+ x, y, w, h = cv2.boundingRect(coords)
54
+ rect = (x, y, w, h)
55
+ cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK)
56
+ refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8")
57
+ return refine_mask(refined_mask)
58
+
59
+ def recolor_dress(image_np, dress_mask, target_color):
60
+ target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
61
+ img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
62
+ dress_pixels = img_lab[dress_mask > 0]
63
+ if len(dress_pixels) == 0:
64
+ return image_np
65
+ mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0)
66
+ a_shift = target_color_lab[1] - mean_A
67
+ b_shift = target_color_lab[2] - mean_B
68
+ img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255)
69
+ img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255)
70
+ img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB)
71
+ feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7)
72
+ lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7
73
+ adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8)
74
+ return (image_np * (1 - adaptive_feather[..., None] / 255) + img_recolored * (adaptive_feather[..., None] / 255)).astype(np.uint8)
75
+
76
+ def change_dress_color(img, color):
77
+ color_map = {
78
+ "Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0),
79
+ "Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255),
80
+ "Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255),
81
+ "Black": (0, 0, 0)
82
+ }
83
+ new_color_bgr = color_map.get(color, (0, 0, 255))
84
+ img_np = np.array(img)
85
+ try:
86
+ dress_mask = segment_dress(img_np)
87
+ if np.sum(dress_mask) < 1000:
88
+ return img
89
+ dress_mask = apply_grabcut(img_np, dress_mask)
90
+ img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr)
91
+ return Image.fromarray(img_recolored)
92
+ except Exception as e:
93
+ st.error(f"Error processing image: {str(e)}")
94
+ return img
95
+
96
+ # ---------------------- STREAMLIT UI ---------------------- #
97
+ st.title("👗 AI Dress Color Changer")
98
+ st.markdown("Upload a dress image and select a new color for realistic recoloring")
99
+
100
+ uploaded_img = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
101
+ color_option = st.selectbox("Choose a Color", [
102
+ "Red", "Blue", "Green", "Yellow", "Purple",
103
+ "Orange", "Cyan", "Magenta", "White", "Black"
104
+ ])
105
+
106
+ if uploaded_img:
107
+ image = Image.open(uploaded_img).convert("RGB")
108
+ st.image(image, caption="Original Image", use_column_width=True)
109
+
110
+ if st.button("Recolor Dress"):
111
+ with st.spinner("Processing..."):
112
+ result = change_dress_color(image, color_option)
113
+ st.image(result, caption="Recolored Dress", use_column_width=True)