Spaces:
Sleeping
Sleeping
File size: 7,823 Bytes
eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 1d2a66c eb83e04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import torch
import gradio as gr
import speech_recognition as sr
import time
import difflib
import os
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from happytransformer import HappyTextToText, TTSettings
# Constants
MODEL_NAME = "prithivida/grammar_error_correcter_v1"
CSS = """
.gradio-container { max-width: 1400px !important; }
.header { text-align: center; padding: 2rem; background: linear-gradient(135deg, #3b82f6, #6366f1); color: white; border-radius: 15px; }
#container { height: 500px; width: 100%; background: #1a1a1a; border-radius: 10px; }
.diff-ins { color: #10b981; background: #d1fae5; padding: 2px 4px; border-radius: 4px; }
.diff-del { color: #ef4444; background: #fee2e2; padding: 2px 4px; border-radius: 4px; }
"""
THREEJS_TEMPLATE = """
<div id="container"></div>
<script async src="https://unpkg.com/[email protected]/dist/es-module-shims.js"></script>
<script type="importmap">
{
"imports": {
"three": "https://unpkg.com/[email protected]/build/three.module.js",
"three/addons/": "https://unpkg.com/[email protected]/examples/jsm/"
}
}
</script>
<script type="module">
import * as THREE from 'three';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
class GrammarVisualizer {
constructor() {
this.initScene();
this.addLights();
this.createGrammarSphere();
this.setupControls();
this.animate();
}
initScene() {
this.scene = new THREE.Scene();
this.camera = new THREE.PerspectiveCamera(75, 500/400, 0.1, 1000);
this.renderer = new THREE.WebGLRenderer({ antialias: true, alpha: true });
document.getElementById('container').appendChild(this.renderer.domElement);
this.renderer.setSize(500, 400);
this.camera.position.z = 5;
}
addLights() {
const ambient = new THREE.AmbientLight(0x404040);
const directional = new THREE.DirectionalLight(0xffffff, 1);
directional.position.set(5, 5, 5);
this.scene.add(ambient, directional);
}
createGrammarSphere() {
const geometry = new THREE.SphereGeometry(2, 32, 32);
this.material = new THREE.MeshPhongMaterial({
color: 0x3b82f6,
transparent: true,
opacity: 0.9
});
this.sphere = new THREE.Mesh(geometry, this.material);
this.scene.add(this.sphere);
}
setupControls() {
this.controls = new OrbitControls(this.camera, this.renderer.domElement);
this.controls.enableDamping = true;
this.controls.dampingFactor = 0.05;
}
animate() {
requestAnimationFrame(() => this.animate());
this.controls.update();
this.renderer.render(this.scene, this.camera);
}
updateVisuals(score) {
const hue = score / 100;
this.material.color.setHSL(hue, 0.8, 0.5);
this.sphere.rotation.x = (score / 50) * Math.PI;
this.sphere.rotation.y = (score / 75) * Math.PI;
}
}
let visualizer;
window.addEventListener('DOMContentLoaded', () => {
visualizer = new GrammarVisualizer();
});
window.updateGrammarVisuals = (score) => {
if(visualizer) visualizer.updateVisuals(score);
};
</script>
"""
# Load models
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
happy_tt = HappyTextToText("T5", MODEL_NAME)
def create_diff_html(original, corrected):
d = difflib.Differ()
diff = d.compare(original.split(), corrected.split())
return " ".join([
f'<span class="diff-ins">{p[2:]}</span> ' if p.startswith('+ ') else
f'<span class="diff-del">{p[2:]}</span> ' if p.startswith('- ') else
f'{p[2:]} ' for p in diff
])
def analyze_grammar(text):
inputs = tokenizer.encode("gec: " + text, return_tensors="pt", max_length=256, truncation=True)
with torch.no_grad():
outputs = model.generate(inputs, max_length=256, num_beams=5)
correction = tokenizer.decode(outputs[0], skip_special_tokens=True)
args = TTSettings(num_beams=5, min_length=1)
happy_correction = happy_tt.generate_text("gec: " + text, args=args).text
final_correction = happy_correction if len(happy_correction) > len(correction) else correction
changes = sum(1 for a, b in zip(text.split(), final_correction.split()) if a != b)
score = max(0, 100 - (changes * 2))
return {
"original": text,
"corrected": final_correction,
"score": score,
"diff_html": create_diff_html(text, final_correction)
}
def process_input(audio_path, text):
# Handle audio input
if audio_path and os.path.exists(audio_path):
try:
recognizer = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio = recognizer.record(source)
text = recognizer.recognize_google(audio)
except Exception as e:
return [
"Audio processing error",
0,
f"<span style='color:red'>Error: {str(e)}</span>",
"<script>window.updateGrammarVisuals(0)</script>"
]
# Handle text input
if not text.strip():
return ["No input provided", 0, "", "<script>window.updateGrammarVisuals(0)</script>"]
try:
results = analyze_grammar(text)
return [
results['original'],
results['score'],
results['diff_html'],
f"<script>window.updateGrammarVisuals({results['score']})</script>"
]
except Exception as e:
return [
"Analysis error",
0,
f"<span style='color:red'>Error: {str(e)}</span>",
"<script>window.updateGrammarVisuals(0)</script>"
]
with gr.Blocks(css=CSS) as app:
gr.Markdown("""
<div class="header">
<h1>π 3D Grammar Analyzer Pro</h1>
<p>Interactive AI-Powered Writing Assistant with 3D Visualization</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input Section")
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="π€ Voice Input")
text_input = gr.Textbox(lines=5, placeholder="π Type your text here...", label="Text Input")
submit_btn = gr.Button("π Analyze Text", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### 3D Visualization")
threejs = gr.HTML(THREEJS_TEMPLATE)
with gr.Row():
grammar_score = gr.Number(label="π Grammar Score", precision=0)
score_gauge = gr.BarPlot(x=["Score"], y=[0], color="#3b82f6", height=150)
diff_output = gr.HTML(label="π Text Corrections")
hidden_trigger = gr.HTML(visible=False)
# Fixed examples configuration
gr.Markdown("### Example Sentences")
gr.Examples(
examples=[
["I is going to the park yesterday."], # Text-only examples
["Their happy about there test results."],
["She dont like apples, but she like bananas."]
],
inputs=[text_input], # Only text input
outputs=[text_input, grammar_score, diff_output, hidden_trigger],
fn=lambda text: process_input(None, text), # Explicitly handle text-only examples
cache_examples=False # Disable caching to prevent startup issues
)
submit_btn.click(
fn=process_input,
inputs=[audio_input, text_input],
outputs=[text_input, grammar_score, diff_output, hidden_trigger]
)
text_input.change(
lambda x: analyze_grammar(x)["score"] if x else 0,
inputs=text_input,
outputs=grammar_score
)
if __name__ == "__main__":
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False # Disable sharing until basic functionality works
) |