|
|
|
|
|
"""
|
|
Warping field estimator(W) defined in the paper, which generates a warping field using the implicit
|
|
keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s.
|
|
"""
|
|
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from .util import SameBlock2d
|
|
from .dense_motion import DenseMotionNetwork
|
|
|
|
|
|
class WarpingNetwork(nn.Module):
|
|
def __init__(
|
|
self,
|
|
num_kp,
|
|
block_expansion,
|
|
max_features,
|
|
num_down_blocks,
|
|
reshape_channel,
|
|
estimate_occlusion_map=False,
|
|
dense_motion_params=None,
|
|
**kwargs
|
|
):
|
|
super(WarpingNetwork, self).__init__()
|
|
|
|
self.upscale = kwargs.get('upscale', 1)
|
|
self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True)
|
|
|
|
if dense_motion_params is not None:
|
|
self.dense_motion_network = DenseMotionNetwork(
|
|
num_kp=num_kp,
|
|
feature_channel=reshape_channel,
|
|
estimate_occlusion_map=estimate_occlusion_map,
|
|
**dense_motion_params
|
|
)
|
|
else:
|
|
self.dense_motion_network = None
|
|
|
|
self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True)
|
|
self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1)
|
|
|
|
self.estimate_occlusion_map = estimate_occlusion_map
|
|
|
|
def deform_input(self, inp, deformation):
|
|
return F.grid_sample(inp, deformation, align_corners=False)
|
|
|
|
def forward(self, feature_3d, kp_driving, kp_source):
|
|
if self.dense_motion_network is not None:
|
|
|
|
dense_motion = self.dense_motion_network(
|
|
feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source
|
|
)
|
|
if 'occlusion_map' in dense_motion:
|
|
occlusion_map = dense_motion['occlusion_map']
|
|
else:
|
|
occlusion_map = None
|
|
|
|
deformation = dense_motion['deformation']
|
|
out = self.deform_input(feature_3d, deformation)
|
|
|
|
bs, c, d, h, w = out.shape
|
|
out = out.view(bs, c * d, h, w)
|
|
out = self.third(out)
|
|
out = self.fourth(out)
|
|
|
|
if self.flag_use_occlusion_map and (occlusion_map is not None):
|
|
out = out * occlusion_map
|
|
|
|
ret_dct = {
|
|
'occlusion_map': occlusion_map,
|
|
'deformation': deformation,
|
|
'out': out,
|
|
}
|
|
|
|
return ret_dct
|
|
|