Spaces:
Runtime error
Runtime error
| from diffusers import DDPMScheduler, LCMScheduler | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.torch_utils import randn_tensor | |
| import torch | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| class DDPMSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| pred_original_sample: Optional[torch.FloatTensor] = None | |
| class MyDDPMScheduler(DDPMScheduler): | |
| def set_noise_list(self, noise_list): | |
| self.noise_list = noise_list | |
| def step_and_update( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| next_sample: torch.FloatTensor = None, | |
| generator=None, | |
| return_dict: bool = True, | |
| ) -> Union[DDPMSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| t = timestep | |
| prev_t = self.previous_timestep(t) | |
| if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: | |
| model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) | |
| else: | |
| predicted_variance = None | |
| # 1. compute alphas, betas | |
| alpha_prod_t = self.alphas_cumprod[t] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| current_alpha_t = alpha_prod_t / alpha_prod_t_prev | |
| current_beta_t = 1 - current_alpha_t | |
| # 2. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" | |
| " `v_prediction` for the DDPMScheduler." | |
| ) | |
| # 3. Clip or threshold "predicted x_0" | |
| if self.config.thresholding: | |
| pred_original_sample = self._threshold_sample(pred_original_sample) | |
| elif self.config.clip_sample: | |
| pred_original_sample = pred_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t | |
| # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
| pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t | |
| current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t | |
| # 5. Compute predicted previous sample µ_t | |
| # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
| pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample | |
| # 6. Add noise | |
| variance = 0 | |
| if t > 0: | |
| v = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) | |
| if v > 1e-9: | |
| self.noise_list[int(t.item() // (1000 // self.num_inference_steps))] = (next_sample - pred_prev_sample) / v | |
| variance_noise = self.noise_list[int(t.item() // (1000 // self.num_inference_steps))] | |
| variance = v * variance_noise | |
| pred_prev_sample = pred_prev_sample + variance | |
| if not return_dict: | |
| return (pred_prev_sample,) | |
| return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| generator=None, | |
| return_dict: bool = True, | |
| ) -> Union[DDPMSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| t = timestep | |
| prev_t = self.previous_timestep(t) | |
| if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: | |
| model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) | |
| else: | |
| predicted_variance = None | |
| # 1. compute alphas, betas | |
| alpha_prod_t = self.alphas_cumprod[t] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| current_alpha_t = alpha_prod_t / alpha_prod_t_prev | |
| current_beta_t = 1 - current_alpha_t | |
| # 2. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
| if self.config.prediction_type == "epsilon": | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| elif self.config.prediction_type == "sample": | |
| pred_original_sample = model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" | |
| " `v_prediction` for the DDPMScheduler." | |
| ) | |
| # 3. Clip or threshold "predicted x_0" | |
| if self.config.thresholding: | |
| pred_original_sample = self._threshold_sample(pred_original_sample) | |
| elif self.config.clip_sample: | |
| pred_original_sample = pred_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t | |
| # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
| pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t | |
| current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t | |
| # 5. Compute predicted previous sample µ_t | |
| # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
| pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample | |
| # 6. Add noise | |
| variance = 0 | |
| if t > 0: | |
| device = model_output.device | |
| variance_noise = self.noise_list[int(t.item() // (1000 // self.num_inference_steps))] | |
| if self.variance_type == "fixed_small_log": | |
| variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise | |
| elif self.variance_type == "learned_range": | |
| variance = self._get_variance(t, predicted_variance=predicted_variance) | |
| variance = torch.exp(0.5 * variance) * variance_noise | |
| else: | |
| variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise | |
| pred_prev_sample = pred_prev_sample + variance | |
| if not return_dict: | |
| return (pred_prev_sample,) | |
| return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) | |