import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # 加载本地模型和tokenizer model_name = "ganchengguang/OIELLM-8B-Instruction" # 替换为你的模型名称 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 定义语言和选项的映射 options = { 'English': {'NER': '/NER/', 'Sentimentrw': '/Sentiment related word/', 'Sentimentadjn': '/Sentiment Adj and N/', 'Sentimentadj': '/Sentiment Adj/', 'Sentimentn': '/Sentiment N/', 'Relation': '/relation extraction/', 'Event': '/event extraction/'}, '中文': {'NER': '/实体命名识别/', 'Sentimentrw': '/感情分析关联单词/', 'Sentimentadjn': '/感情分析形容词名词/', 'Sentimentadj': '/感情分析形容词/', 'Sentimentn': '/感情分析名词/', 'Relation': '/关系抽取/', 'Event': '/事件抽取/'}, '日本語': {'NER': '/固有表現抽出/', 'Sentimentrw': '/感情分析関連単語/', 'Sentimentadjn': '/感情分析形容詞名詞/', 'Sentimentadj': '/感情分析形容詞/', 'Sentimentn': '/感情分析名詞/', 'Relation': '/関係抽出/', 'Event': '/事件抽出/'} } # 定义聊天函数 def respond(message, language, task, system_message, max_tokens, temperature, top_p): # 初始化对话历史 messages = [{"role": "system", "content": system_message}] messages.append({"role": "user", "content": message + " " + options[language][task]}) # 编码输入 inputs = tokenizer(messages, return_tensors="pt", padding=True, truncation=True) # 生成回复 outputs = model.generate( inputs["input_ids"], max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True ) # 解码回复 response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response # 更新任务选项的函数 def update_tasks(language): return gr.update(choices=list(options[language].keys())) # 创建Gradio接口 demo = gr.ChatInterface( respond, inputs=[ gr.Textbox(label="Input Text"), gr.Dropdown(label="Language", choices=list(options.keys()), value="English"), gr.Dropdown(label="Task", choices=list(options['English'].keys())), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], live=True ) # 设置语言选择框的动态更新 demo.components[1].change(update_tasks, inputs=demo.components[1], outputs=demo.components[2]) if __name__ == "__main__": demo.launch()