File size: 9,205 Bytes
9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 9e82102 9cdcbb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import json
import logging
block_size = 128
vocab_size = 500
n_embed = 384
dropout = 0.2
n_head = 6
n_layer = 6
kv_heads = 3
max_position_embeddings = 128
class Head(nn.Module):
def __init__(self, head_size=16):
super().__init__()
self.query = nn.Linear(n_embed, head_size, bias=False)
self.key = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self,x):
B,T,C = x.shape
q = self.query(x)
k = self.key(x)
wei = (q @ k.transpose(-2,-1)) * (k.shape[-1]**(-0.5))
wei = wei.masked_fill(self.tril[:T,:T]==0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v ## (B,T,HS)
return out
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class MultiHeadAttention(nn.Module):
def __init__(self,num_heads, head_dim) :
super().__init__()
assert num_heads%kv_heads == 0
self.n_embed = n_embed
self.num_attn_heads = num_heads
self.head_dim = head_dim
self.kv_heads = kv_heads
# self.kv_out_proj = head_dim * self.kv_heads #Doubt
self.num_kv_groups = self.num_attn_heads // self.kv_heads
self.heads = nn.ModuleList(Head(head_size=head_dim) for _ in range(num_heads))
##Only self attention
#For num_attn_heads number of heads
self.Wq = nn.Linear(self.n_embed, self.num_attn_heads*self.head_dim)
#For kv_heads number of heads
self.Wk = nn.Linear(self.n_embed, self.kv_heads * self.head_dim)
self.Wv = nn.Linear(self.n_embed, self.kv_heads * self.head_dim)
self.o_proj = nn.Linear(self.head_dim * self.num_attn_heads, self.n_embed)
self.dropout = nn.Dropout(dropout)
# self.attention_mask = torch.zeros((bsz, self.num_attn_heads, qlen, qlen))
# self.attention_mask[:, :, :, qlen:] = float('-inf') # Mask out positions beyond the key sequence length
def forward(self, x, attn_mask= None):
"""
Parameters:
x (bsz, qlen, embed) : input
"""
# out = torch.cat([h(x) for h in self.heads], dim=-1)
# attn_output = self.dropout(self.o_proj(out))
# ################ Experiment
bsz, qlen, embed = x.size()
# print("input size", x.size())
q = self.Wq(x) ##(B,T,head_dim * num_heads)
k = self.Wk(x) ##(B,T,head_dim * kv_heads)
v = self.Wv(x) ##(B,T,head_dim * kv_heads)
q = q.view(bsz, qlen, self.num_attn_heads, self.head_dim).transpose(2,1) ##(B,T,head_dim * num_heads)
k = k.view(bsz, qlen, self.kv_heads, self.head_dim).transpose(2,1) ##(B,T,head_dim * kv_heads)
v = v.view(bsz, qlen, self.kv_heads, self.head_dim).transpose(2,1) ##(B,T,head_dim * kv_heads)
# print("k-shape before ",k.shape)
k = repeat_kv(k, self.num_kv_groups) ##(B, n_kvheads * nrep, qlen, head_dim)
v = repeat_kv(v, self.num_kv_groups)
attn_scores = q @ k.transpose(-1,-2)/torch.sqrt(torch.tensor(self.n_embed)) ##(B, T, block_size)
################
# print("Q-shape ", q.shape)
# print("k-shape ",k.shape)
# print(k.shape[-2])
# print(attn_scores.shape)
if attn_mask is not None:
# causal_mask = attn_mask[:, :, :, : k.shape[-2]]
# attn_scores = attn_scores + causal_mask
attn_scores = attn_scores.masked_fill(
attn_mask[None, None, :qlen, :qlen]==0 , float("-inf")
)
attn_scores = F.softmax(attn_scores, dim=-1)
attn_scores = F.dropout(attn_scores) ##Why this dropout is required??
attn_output = torch.matmul(attn_scores, v) ##(B, n_heads, qlen, hidden_size)
attn_output = attn_output.transpose(1,2).contiguous()
attn_output = attn_output.view(bsz, qlen, self.n_embed)
attn_output = self.o_proj(attn_output)
return attn_output
class FeedForward(nn.Module):
def __init__(self,n_embed) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed,4* n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
x = self.net(x)
return x
class decoder_block(nn.Module):
def __init__(self, n_embed, n_heads, attn_mask=None):
super().__init__()
# Assume 0 for allowed positions and -inf for masked positions
self.sa = MultiHeadAttention(n_heads,n_embed//n_head)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
self.ffwd = FeedForward(n_embed)
# self.causal_mask = torch.tril(torch.ones(block_size,block_size))
self.register_buffer('causal_mask',torch.tril(torch.ones(block_size,block_size)))
def forward(self, x):
x = x + self.sa(self.ln1(x), attn_mask = self.causal_mask)
x = x + self.ffwd(self.ln2(x))
return x
class my_gpt(nn.Module):
def __init__(self, device='cpu', block_size = 128):
super().__init__()
self.device = device
self.block_size = block_size ##context window size
self.token_embed = nn.Embedding(vocab_size, n_embed)
self.pos_embed = nn.Embedding(max_position_embeddings, n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
self.sa_head = Head(vocab_size)
self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed) # final layer norm
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, x, targets = None):
"""
Args:
x: int(B,T) Token ids
targets :
Returns:
logits
"""
# print("idx ", idx)
B, T = x.size() ##
tok_emd = self.token_embed(x) ##(B,T,C)
position_ids = torch.arange(T, device = self.device )
pos_emd = self.pos_embed(position_ids)
x = tok_emd + pos_emd
# print("x1 ", x.shape)
x = self.d_blocks(x) #
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) ##(B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
# print("logits ", logits.shape)
logits = logits.view(B*T,C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
# print("Logits", logits.shape)
return logits, loss
def generate(self, context : torch.tensor, max_new_tokens: int = 46, use_cache = False):
"""
Generates the next "max_new_tokens" number of tokens.
Args:
context (B,T):
max_new_tokens (int):
Returns:
[token] : List of generated tokens.
"""
# print("Context:" , context)
for _ in range(max_new_tokens):
##Take only last allowed number of tokens
idx_tokens = context[:, -self.block_size:]
# print(f"idx tokens {idx_tokens.shape}")
##generate the next token
logits, loss = self(idx_tokens)
##Take only last allowed number of tokens
logits = logits[:,-1,:] ##(B,vocab_size)
# print("logits:" , logits.shape)
probs = F.softmax(logits, dim= -1)
idx_next = torch.multinomial(probs,num_samples=1) ##(B,1)
context = torch.concatenate([context, idx_next], dim=1)
return context
def save_pretrained(self, path):
torch.save(self.state_dict(),path)
print("Saved pretrained Successfully")
@classmethod
def load_pretrained(cls, path):
print("Loading pretrained model...")
model = cls()
model.load_state_dict(torch.load(path))
return model
|