import joblib import pandas as pd import numpy as np import gradio as gr import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest from sklearn.preprocessing import MinMaxScaler, OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.utils.class_weight import compute_class_weight import gradio as gr import joblib import warnings warnings.filterwarnings("ignore") model= joblib.load("C:/Users/Gregory Arthur/Desktop/models/LR.joblib") model test= pd.read_csv("dataframes/Vodafone_churn.csv") test ##testing our model model.predict(test) ##creating a function to return a string depending on the output of the model def classify(num): if num == 0: return "Customer will not Churn" else: return "Customer will churn" """creating a function for my gradion fn defining my parameters which my fucntion will accept, and are the same as the features I trained my model on""" def predict_churn(SeniorCitizen, Partner, Dependents, tenure, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges): ##in the code below, I am created a list of my input features input_data = [ SeniorCitizen, Partner, Dependents, tenure, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges ] ##I am changing my features into a dataframe since that is how I trained my model input_df = pd.DataFrame([input_data], columns=[ "SeniorCitizen", "Partner", "Dependents", "tenure", "InternetService", "OnlineSecurity", "OnlineBackup", "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies", "Contract", "PaperlessBilling", "PaymentMethod", "MonthlyCharges", "TotalCharges" ]) pred = model.predict(input_df) ##I am making a prediction on the input data. output = classify(pred[0]) ## I am passing the first predction through my classify function I created earlier if output == "Customer will not Churn": return [(0, output)] else: return [(1, output)] ##setting my function to return the binary classification and the written output output = gr.outputs.HighlightedText(color_map={ "Customer will not Churn": "green", "Customer will churn": "red" }) ##assigning colors to the respective output ##building my interface and wrapping my model in the function ##using gradio blocks to beautify my output block= gr.Blocks() with block: input=[gr.inputs.Slider(minimum=0, maximum= 1, step=1, label="SeniorCitizen: Select 1 for Yes and 0 for No"), gr.inputs.Radio(["Yes", "No"], label="Partner: Do You Have a Partner?"), gr.inputs.Radio(["Yes", "No"], label="Dependents: Do You Have a Dependent?"), gr.inputs.Number(label="tenure: How Long Have You Been with Vodafone in Months?"), gr.inputs.Radio(["DSL", "Fiber optic", "No"], label="InternetService"), gr.inputs.Radio(["Yes", "No", "No internet service"], label="OnlineSecurity"), gr.inputs.Radio(["Yes", "No", "No internet service"], label="OnlineBackup"), gr.inputs.Radio(["Yes", "No", "No internet service"], label="DeviceProtection"), gr.inputs.Radio(["Yes", "No", "No internet service"], label="TechSupport"), gr.inputs.Radio(["Yes", "No", "No internet service"], label="StreamingTV"), gr.inputs.Radio(["Yes", "No", "No internet service"], label="StreamingMovies"), gr.inputs.Radio(["Month-to-month", "One year", "Two year"], label="Contract"), gr.inputs.Radio(["Yes", "No"], label="PaperlessBilling"), gr.inputs.Radio([ "Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)" ], label="PaymentMethod"), gr.inputs.Number(label="MonthlyCharges"), gr.inputs.Number(label="TotalCharges")] output= gr.outputs.HighlightedText(color_map={ "Customer will not Churn": "green", "Customer will churn": "red"}, label= "Your Output", show_legend=True) gr.themes="freddyaboulton/dracula_revamped" predict_btn= gr.Button("Predict") predict_btn.click(fn= predict_churn, inputs= input, outputs=output) block.launch()