from transformers import AutoTokenizer, AutoModel import torch import faiss import gradio as gr import json class FaissTextRetrieval: def __init__(self, model_name): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name).eval() self.device = "cpu" self.all_index = faiss.read_index("data/all.index") with open("data/all.json", "r") as f: self.all_id2label = {int(k):v for k, v in json.load(f).items()} self.general_index = faiss.read_index("data/general.index") with open("data/general.json", "r") as f: self.general_id2label = {int(k):v for k, v in json.load(f).items()} self.character_index = faiss.read_index("data/character.index") with open("data/character.json", "r") as f: self.character_id2label = {int(k):v for k, v in json.load(f).items()} def to(self, device, dtype=torch.float32): self.device = device self.dtype = dtype if "cuda" in device else torch.float32 self.model.to(device, dtype=dtype) @torch.no_grad() def average_pool(self, last_hidden_states, attention_mask): last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] @torch.no_grad() def get_embeddings(self, input_texts: list): batch_dict = self.tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') input_ids = batch_dict["input_ids"].to(self.device) attention_mask = batch_dict["attention_mask"].to(self.device) outputs = self.model(input_ids=input_ids, attention_mask=attention_mask) embeddings = self.average_pool(outputs.last_hidden_state, attention_mask) embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def search(self, query, top_k: int = 5, search_type = "all") -> list: query = "query:" + query query_embeddings = self.get_embeddings([query]).float().cpu().numpy() if search_type == "all": index = self.all_index id2label = self.all_id2label elif search_type == "general": index = self.general_index id2label = self.general_id2label elif search_type == "character": index = self.character_index id2label = self.character_id2label distances, indices = index.search(query_embeddings, top_k) results = {id2label[idx]:distances[0][j] for j, idx in enumerate(indices[0])} return results def reset(self): self.passage_texts = [] self.index = None def main(): rag = FaissTextRetrieval("intfloat/multilingual-e5-large") def search(query, search_type): return rag.search(query, top_k=50, search_type=search_type) description = """Model:[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) Tag:[SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3) """ gr.Interface(search, inputs=("textarea", gr.Radio(["all", "general", "character"], value="all")), outputs="label", title="Tag Search", description=description).launch() if __name__ == "__main__": main()