tag_search / app.py
furusu's picture
Update app.py
a24940e verified
from transformers import AutoTokenizer, AutoModel
import torch
import faiss
import gradio as gr
import json
class FaissTextRetrieval:
def __init__(self, model_name):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name).eval()
self.device = "cpu"
self.all_index = faiss.read_index("data/all.index")
with open("data/all.json", "r") as f:
self.all_id2label = {int(k):v for k, v in json.load(f).items()}
self.general_index = faiss.read_index("data/general.index")
with open("data/general.json", "r") as f:
self.general_id2label = {int(k):v for k, v in json.load(f).items()}
self.character_index = faiss.read_index("data/character.index")
with open("data/character.json", "r") as f:
self.character_id2label = {int(k):v for k, v in json.load(f).items()}
def to(self, device, dtype=torch.float32):
self.device = device
self.dtype = dtype if "cuda" in device else torch.float32
self.model.to(device, dtype=dtype)
@torch.no_grad()
def average_pool(self, last_hidden_states, attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
@torch.no_grad()
def get_embeddings(self, input_texts: list):
batch_dict = self.tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
input_ids = batch_dict["input_ids"].to(self.device)
attention_mask = batch_dict["attention_mask"].to(self.device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
embeddings = self.average_pool(outputs.last_hidden_state, attention_mask)
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
return embeddings
def search(self, query, top_k: int = 5, search_type = "all") -> list:
query = "query:" + query
query_embeddings = self.get_embeddings([query]).float().cpu().numpy()
if search_type == "all":
index = self.all_index
id2label = self.all_id2label
elif search_type == "general":
index = self.general_index
id2label = self.general_id2label
elif search_type == "character":
index = self.character_index
id2label = self.character_id2label
distances, indices = index.search(query_embeddings, top_k)
results = {id2label[idx]:distances[0][j] for j, idx in enumerate(indices[0])}
return results
def reset(self):
self.passage_texts = []
self.index = None
def main():
rag = FaissTextRetrieval("intfloat/multilingual-e5-large")
def search(query, search_type):
return rag.search(query, top_k=50, search_type=search_type)
description = """Model:[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
Tag:[SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3)
"""
gr.Interface(search, inputs=("textarea", gr.Radio(["all", "general", "character"], value="all")), outputs="label", title="Tag Search", description=description).launch()
if __name__ == "__main__":
main()