Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw, ImageFont
|
2 |
+
from textwrap import wrap
|
3 |
+
import requests
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
import twitter
|
12 |
+
|
13 |
+
api = twitter.Api(consumer_key='IXpQTCB9vo9IGfOVAPBePE2Wi',
|
14 |
+
consumer_secret='qD1m4zaAiM6h2T7swBuWboORTXY4cA9eNcgDHlfFAuqKfNTiT3',
|
15 |
+
access_token_key='1529787212417605634-Io7LlY8AEdZEzOgiAYMb3hZyu9gsLL',
|
16 |
+
access_token_secret='QGo3eOn7xgPWHusmuP2JDZxkTMPJ51wtgO9wV3PY1b8wm')
|
17 |
+
|
18 |
+
|
19 |
+
def drawTweet(tweet,i):
|
20 |
+
# Set the dimensions of the image
|
21 |
+
width, height = 1000, 200
|
22 |
+
|
23 |
+
# Create a blank image with a white background
|
24 |
+
image = Image.new('RGBA', (width, height), 'white')
|
25 |
+
|
26 |
+
# Get a drawing context
|
27 |
+
draw = ImageDraw.Draw(image)
|
28 |
+
|
29 |
+
# Set the font for the tweet text
|
30 |
+
font = ImageFont.truetype('arial.ttf', size=36, encoding='utf-16')
|
31 |
+
|
32 |
+
user = tweet.user
|
33 |
+
|
34 |
+
|
35 |
+
user_tag = user.screen_name
|
36 |
+
text = tweet.text
|
37 |
+
|
38 |
+
|
39 |
+
tweet_text = text
|
40 |
+
|
41 |
+
words = tweet_text.split()
|
42 |
+
# Insert a newline character after every 10 words
|
43 |
+
formatted_string = ''
|
44 |
+
for i, word in enumerate(words):
|
45 |
+
formatted_string += word+' '
|
46 |
+
if (i + 1) % 7 == 0:
|
47 |
+
formatted_string += '\n'
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
draw.multiline_text( (135,50), formatted_string , fill='black' , font=font, embedded_color=True)
|
52 |
+
draw.text((135,10), f"@{user_tag}", fill='black',font=font)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
response = requests.get(user.profile_image_url_https)
|
57 |
+
content = response.content
|
58 |
+
|
59 |
+
f = BytesIO(content)
|
60 |
+
|
61 |
+
avatar_size = (100, 100)
|
62 |
+
avatar_image = Image.open(f)
|
63 |
+
avatar_image = avatar_image.resize(avatar_size)
|
64 |
+
image.paste(avatar_image, (10, 10))
|
65 |
+
|
66 |
+
|
67 |
+
return image
|
68 |
+
|
69 |
+
|
70 |
+
def collect_tweets(topic):
|
71 |
+
|
72 |
+
# Search for tweets matching the query
|
73 |
+
tweets = api.GetSearch(term=f"{topic} -filter:retweets", lang='en', result_type="recent", count=100)
|
74 |
+
|
75 |
+
# Filter out retweets
|
76 |
+
|
77 |
+
tweets.sort(key=lambda tweet: tweet.favorite_count + tweet.retweet_count, reverse=True)
|
78 |
+
|
79 |
+
images = []
|
80 |
+
i = 1
|
81 |
+
for tweet in tweets:
|
82 |
+
img = drawTweet(tweet,i)
|
83 |
+
images.append(img)
|
84 |
+
|
85 |
+
sentiment_plot = sentiment_analysis(tweets,topic)
|
86 |
+
|
87 |
+
return images,sentiment_plot
|
88 |
+
|
89 |
+
def sentiment_analysis(tweets,topic):
|
90 |
+
|
91 |
+
tweet_procs = []
|
92 |
+
for tweet in tweets:
|
93 |
+
tweet_words = []
|
94 |
+
for word in tweet.text.split(' '):
|
95 |
+
if word.startswith('@') and len(word) > 1:
|
96 |
+
word = '@user'
|
97 |
+
elif word.startswith('https'):
|
98 |
+
word = "http"
|
99 |
+
tweet_words.append(word)
|
100 |
+
tweet_proc = " ".join(tweet_words)
|
101 |
+
tweet_procs.append(tweet_proc)
|
102 |
+
|
103 |
+
|
104 |
+
API_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
|
105 |
+
headers = {"Authorization": "Bearer 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"}
|
106 |
+
|
107 |
+
def query(payload):
|
108 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
109 |
+
return response.json()
|
110 |
+
|
111 |
+
model_input = {
|
112 |
+
"inputs": [tweet_procs[0]]
|
113 |
+
}
|
114 |
+
|
115 |
+
for i in range(1,len(tweets)):
|
116 |
+
model_input["inputs"].append(tweet_procs[i])
|
117 |
+
|
118 |
+
output = query({
|
119 |
+
"inputs": model_input["inputs"]})
|
120 |
+
|
121 |
+
negative = 0
|
122 |
+
neutral = 0
|
123 |
+
positive = 0
|
124 |
+
|
125 |
+
for score in output:
|
126 |
+
neg = 0
|
127 |
+
neu = 0
|
128 |
+
pos = 0
|
129 |
+
for labels in score:
|
130 |
+
if labels['label'] == 'LABEL_0':
|
131 |
+
neg += labels['score']
|
132 |
+
elif labels['label'] == 'LABEL_1':
|
133 |
+
neu += labels['score']
|
134 |
+
elif labels['label'] == 'LABEL_2':
|
135 |
+
pos += labels['score']
|
136 |
+
sentiment = max(neg,neu,pos)
|
137 |
+
if neg == sentiment:
|
138 |
+
negative += 1
|
139 |
+
elif neu == sentiment:
|
140 |
+
neutral += 1
|
141 |
+
elif pos == sentiment:
|
142 |
+
positive += 1
|
143 |
+
|
144 |
+
|
145 |
+
sns.barplot(x=["Negative Sentiment", "Neutral Sentiment", "Positive Sentiment"], y = [negative,neutral,positive])
|
146 |
+
plt.title(f"Sentiment Analysis on Twitter regarding {topic}")
|
147 |
+
canvas = FigureCanvasAgg(plt.gcf())
|
148 |
+
canvas.draw()
|
149 |
+
plot = np.array(canvas.buffer_rgba())
|
150 |
+
return plot
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
# Create the Gradio app
|
156 |
+
app = gr.Interface(fn=collect_tweets, inputs=gr.Textbox(label="Enter a topic for tweets"), outputs=[gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="50"), gr.Image(label="Sentiment Analysis Result")])
|
157 |
+
|
158 |
+
# Run the app
|
159 |
+
app.launch()
|
160 |
+
|
161 |
+
|