File size: 17,414 Bytes
a06fad0
 
 
40177ed
a06fad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40177ed
 
f395a55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a06fad0
 
 
 
 
 
40177ed
a06fad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Reference: https://github.com/google-research/deeplab2/blob/main/model/pixel_decoder/kmax.py
# Modified by Qihang Yu

from turtle import forward
from typing import Dict, List

import torch
from torch import nn
from torch.nn import functional as F

from timm.models.layers import DropPath
from timm.models.layers import trunc_normal_tf_ as trunc_normal_

from detectron2.config import configurable
from detectron2.layers import ShapeSpec
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
from torch.cuda.amp import autocast

from ..backbone.convnext import LayerNorm

import math


def get_activation(name):
    if name is None or name.lower() == 'none':
        return nn.Identity()
    if name == 'relu':
        return nn.ReLU()
    elif name == 'gelu':
        return nn.GELU()

class SyncBNCPU(nn.SyncBatchNorm):
    def forward(self, input):
        self._check_input_dim(input)
        self._check_non_zero_input_channels(input)
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum
        bn_training = False

        running_mean = self.running_mean 
        running_var = self.running_var

        # fallback to framework BN when synchronization is not necessary
        return F.batch_norm(
            input,
            running_mean,
            running_var,
            self.weight,
            self.bias,
            bn_training,
            exponential_average_factor,
            self.eps,
        )


def get_norm(name, channels):
    if name is None or name.lower() == 'none':
        return nn.Identity()

    if name.lower() == 'syncbn':
        return SyncBNCPU(channels, eps=1e-3, momentum=0.01)


class ConvBN(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, norm=None, act=None,
                 conv_type='2d', conv_init='he_normal', norm_init=1.0):
        super().__init__()
        
        if conv_type == '2d':
            self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        elif conv_type == '1d':
            self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)

        self.norm = get_norm(norm, out_channels)
        self.act = get_activation(act)

        if conv_init == 'normal':
            nn.init.normal_(self.conv.weight, std=.02)
        elif conv_init == 'trunc_normal':
            trunc_normal_(self.conv.weight, std=.02)
        elif conv_init == 'he_normal':
            # https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal
            trunc_normal_(self.conv.weight, std=math.sqrt(2.0 / in_channels))
        elif conv_init == 'xavier_uniform':
            nn.init.xavier_uniform_(self.conv.weight)
        if bias:
            nn.init.zeros_(self.conv.bias)

        if norm is not None:
            nn.init.constant_(self.norm.weight, norm_init)

    def forward(self, x):
        return self.act(self.norm(self.conv(x)))


MAX_SPAN = 255
def _compute_relative_distance_matrix(query_length, key_length):
    if (key_length - query_length) % 2:
        raise ValueError('Key_length should be query_length + 2 * memory_flange.')
    key_index = torch.arange(key_length)
    query_index = torch.arange(query_length) + (key_length - query_length) // 2
    distance_matrix = key_index[None, :] - query_index[:, None]
    # Shift the distance_matrix so that it is >= 0. Each entry of the
    # distance_matrix distance will index a relative positional embedding.
    distance_matrix = distance_matrix + MAX_SPAN - 1
    return distance_matrix


class RelativePositionalEncoding(nn.Module):
    def __init__(self, query_length, key_length, depth):
        super().__init__()
        self._embeddings = nn.Embedding(MAX_SPAN * 2 - 1, depth)
        trunc_normal_(self._embeddings.weight, std=1.0)
        self._relative_distance_matrix = _compute_relative_distance_matrix(query_length, key_length)
        self.query_length = query_length
        self.key_length = key_length
        self.depth = depth

    def forward(self):
        return self._embeddings.weight[self._relative_distance_matrix.reshape(-1)].reshape(self.query_length, self.key_length, self.depth)


# https://github.com/google-research/deeplab2/blob/main/model/layers/axial_layers.py#L36
class AxialAttention(nn.Module):
    def __init__(self, in_planes, query_shape=56, total_key_depth=512, total_value_depth=1024, num_heads=8):
        assert (total_key_depth % num_heads == 0) and (total_value_depth % num_heads == 0)
        super().__init__()
        self._in_planes = in_planes
        self._query_shape = query_shape
        self._total_key_depth = total_key_depth
        self._total_value_depth = total_value_depth
        self._num_heads = num_heads
        self._key_depth_per_head = total_key_depth // num_heads

        self.qkv_transform = ConvBN(in_planes, self._total_key_depth * 2 + self._total_value_depth, kernel_size=1, stride=1,
                                       padding=0, bias=False, norm=None, act=None, conv_type='1d')
        trunc_normal_(self.qkv_transform.conv.weight, std=in_planes ** -0.5)

        self._query_rpe = RelativePositionalEncoding(query_shape, query_shape, self._key_depth_per_head)
        self._key_rpe = RelativePositionalEncoding(query_shape, query_shape, self._key_depth_per_head)
        self._value_rpe = RelativePositionalEncoding(query_shape, query_shape, total_value_depth // num_heads)

        self._batch_norm_qkv = get_norm('syncbn', self._total_key_depth * 2 + self._total_value_depth)
        self._batch_norm_similarity = get_norm('syncbn', num_heads * 3)
        self._batch_norm_retrieved_output = get_norm('syncbn', self._total_value_depth * 2)


    def forward(self, x):
        N, C, L = x.shape
        qkv = self._batch_norm_qkv(self.qkv_transform(x))
        q, k, v = torch.split(qkv, [self._total_key_depth, self._total_key_depth, self._total_value_depth], dim=1)
        q = q.reshape(N, self._num_heads, self._total_key_depth // self._num_heads, L)
        k = k.reshape(N, self._num_heads, self._total_key_depth // self._num_heads, L)
        v = v.reshape(N, self._num_heads, self._total_value_depth // self._num_heads, L)

        similarity_logits = []
        content_similarity = torch.einsum('bhdl,bhdm->bhlm', q, k)
        query_rpe = self._query_rpe()
        query_rpe_similarity = torch.einsum('bhdl,lmd->bhlm', q, query_rpe)
        key_rpe = self._key_rpe()
        key_rpe_similarity = torch.einsum('bhdm,lmd->bhlm', k, key_rpe)
        similarity_logits = torch.cat([content_similarity, query_rpe_similarity, key_rpe_similarity], dim=1)
        similarity_logits = self._batch_norm_similarity(similarity_logits).reshape(N, 3, self._num_heads, L, L).sum(dim=1)

        with autocast(enabled=False):
            weights = F.softmax(similarity_logits.float(), dim=-1)

        retrieved_content = torch.einsum('bhlm,bhdm->bhdl', weights, v)
        value_rpe = self._value_rpe()
        retrieved_rpe = torch.einsum('bhlm,lmd->bhdl', weights, value_rpe)

        retrieved_output = torch.cat([retrieved_content, retrieved_rpe], dim=1).reshape(N, 2*self._total_value_depth, L)
        retrieved_output = self._batch_norm_retrieved_output(retrieved_output).reshape(N, 2, self._total_value_depth, L).sum(1)

        return retrieved_output


# https://github.com/google-research/deeplab2/blob/main/model/layers/axial_layers.py#L316
class AxialAttention2D(nn.Module):
    def __init__(self, in_planes, query_shape=[56, 56], filters=512, key_expansion=1, value_expansion=2, num_heads=8):
        super().__init__()
        total_key_depth = int(round(filters * key_expansion))
        total_value_depth = int(round(filters * value_expansion))
        self._total_key_depth = total_key_depth
        self._total_value_depth = total_value_depth
        self._height_axis = AxialAttention(
            in_planes=in_planes,
            query_shape=query_shape[0],
            total_key_depth=total_key_depth,
            total_value_depth=total_value_depth,
            num_heads=num_heads)
        self._width_axis = AxialAttention(
            in_planes=total_value_depth,
            query_shape=query_shape[1],
            total_key_depth=total_key_depth,
            total_value_depth=total_value_depth,
            num_heads=num_heads)

    def forward(self, x):
        # N C H W -> N W C H
        N, C, H, W = x.shape
        x = x.permute(0, 3, 1, 2).contiguous()
        x = x.reshape(N*W, C, H)
        x = self._height_axis(x)
        # N W C H -> N H C W
        x = x.reshape(N, W, self._total_value_depth, H).permute(0, 3, 2, 1).contiguous()
        x = x.reshape(N*H, self._total_value_depth, W)
        x = self._width_axis(x)
        x = x.reshape(N, H, self._total_value_depth, W).permute(0, 2, 1, 3).contiguous()
        x = x.reshape(N, self._total_value_depth, H, W)
        return x


# https://github.com/google-research/deeplab2/blob/main/model/layers/axial_blocks.py#L36
class SingleBlock(nn.Module):

    def __init__(self, inplanes, filter_list, block_type, query_shape=[56, 56], key_expansion=1, value_expansion=2, num_heads=8, drop_path_prob=0.0):
        super(SingleBlock, self).__init__()
        self._block_type = block_type.lower()
        self._filter_list = filter_list
        self._conv1_bn_act = ConvBN(inplanes, self._filter_list[0], kernel_size=1, bias=False, norm='syncbn', act='gelu')
        if self._block_type == 'axial':
            self._attention = AxialAttention2D(in_planes=self._filter_list[0], query_shape=query_shape, filters=self._filter_list[1],
                                                key_expansion=key_expansion, value_expansion=value_expansion, num_heads=num_heads)
            output_channel = filter_list[1] * value_expansion
        elif self._block_type == 'bottleneck':
            self._conv2_bn_act = ConvBN(self._filter_list[0], self._filter_list[1], kernel_size=3, padding=1, bias=False, norm='syncbn', act='gelu')
            output_channel = filter_list[1]
        self._conv3_bn = ConvBN(output_channel, self._filter_list[2], kernel_size=1, bias=False, norm='syncbn', act=None, norm_init=0.0)

        self._shortcut = None
        if inplanes != self._filter_list[-1]:
            self._shortcut = ConvBN(inplanes, self._filter_list[-1], kernel_size=1, bias=False, norm='syncbn', act=None)
        self.drop_path = DropPath(drop_path_prob) if drop_path_prob > 0. else nn.Identity() 

    def forward(self, x):
        x = F.gelu(x)

        shortcut = x
        if self._shortcut is not None:
            shortcut = self._shortcut(shortcut)

        x = self._conv1_bn_act(x)
        if self._block_type == 'axial':
            x = self._attention(x)
            x = F.gelu(x)
        elif self._block_type == 'bottleneck':
            x = self._conv2_bn_act(x)
        x = self._conv3_bn(x)

        x = self.drop_path(x) + shortcut

        return x


# https://github.com/google-research/deeplab2/blob/main/model/layers/axial_block_groups.py#L42
class BlockGroup(nn.Module):
    def __init__(self, inplanes, base_filter, num_blocks, block_type, **kwargs):
        super().__init__()
        self._num_blocks = num_blocks
        block_type = block_type.lower()
        if block_type == 'axial':
            # https://github.com/google-research/deeplab2/blob/main/model/layers/axial_block_groups.py#L247
            filter_list = [base_filter * 2, base_filter, base_filter * 4]
        elif block_type == 'bottleneck':
            # https://github.com/google-research/deeplab2/blob/main/model/layers/axial_block_groups.py#L250
            filter_list = [base_filter, base_filter, base_filter * 4]

        self._blocks = nn.ModuleList()
        for i in range(num_blocks):
            self._blocks.append(SingleBlock(inplanes=inplanes, filter_list=filter_list, block_type=block_type, **kwargs))
            inplanes = filter_list[-1]

    def forward(self, x):
        for i in range(self._num_blocks):
            x = self._blocks[i](x)
        return x


# https://github.com/google-research/deeplab2/blob/7a01a7165e97b3325ad7ea9b6bcc02d67fecd07a/model/layers/resized_fuse.py#L31
class ResizedFuse(nn.Module):
    def __init__(self, low_in_channels, high_in_channels, out_channels):
        super().__init__()
        self.low_in_channels = low_in_channels
        self.high_in_channels = high_in_channels
        self.out_channels = out_channels
        if low_in_channels != out_channels:
            self._conv_bn_low = ConvBN(low_in_channels, out_channels, kernel_size=1, bias=False, norm='syncbn', act=None)
        if high_in_channels != out_channels:
            self._conv_bn_high = ConvBN(high_in_channels, out_channels, kernel_size=1, bias=False, norm='syncbn', act=None)

    def forward(self, lowres_x, highres_x):

        align_corners = (lowres_x.shape[-1] % 2 == 1)
        if self.low_in_channels != self.out_channels:
            lowres_x = F.gelu(lowres_x)
            lowres_x = self._conv_bn_low(lowres_x)
            lowres_x = F.interpolate(lowres_x, size=highres_x.shape[2:], mode='bilinear', align_corners=align_corners)
        else:
            lowres_x = F.interpolate(lowres_x, size=highres_x.shape[2:], mode='bilinear', align_corners=align_corners)

        if self.high_in_channels != self.out_channels:
            highres_x = F.gelu(highres_x)
            highres_x = self._conv_bn_high(highres_x)

        return lowres_x + highres_x


@SEM_SEG_HEADS_REGISTRY.register()
class kMaXPixelDecoder(nn.Module):
    @configurable
    def __init__(
        self,
        input_shape: Dict[str, ShapeSpec],
        *,
        dec_layers: List[int],
        dec_channels: List[int],
        layer_types: List[str],
        drop_path_prob: float,
        spatial_shape: List[int],
    ):
        """
        NOTE: this interface is experimental.
        Args:
        """
        super().__init__()
        self.num_stages = len(input_shape)
        assert self.num_stages == len(dec_layers) and self.num_stages == len(dec_channels) and self.num_stages == len(layer_types)
        # For now, we hard code all hyper-parameters.
        block_types = ['axial', 'axial', 'bottleneck', 'bottleneck']
        input_shape = sorted(input_shape.items(), key=lambda x: -x[1].stride)
        self.in_features = [k for k, v in input_shape] # starting from "res5" to "res2"
        in_channels = [v.channels for k, v in input_shape]

        add_one = (spatial_shape[0] % 2, spatial_shape[1] % 2)
        query_shape = [
            (spatial_shape[0]//32+add_one[0], spatial_shape[1]//32+add_one[1]),
            (spatial_shape[0]//16+add_one[0], spatial_shape[1]//16+add_one[1]),
            (spatial_shape[0]//8+add_one[0], spatial_shape[1]//8+add_one[1]),
            (spatial_shape[0]//4+add_one[0], spatial_shape[1]//4+add_one[1])]

        self._in_norms = nn.ModuleList()
        self._stages = nn.ModuleList()
        self._resized_fuses = nn.ModuleList()

        for i in range(self.num_stages):
            self._in_norms.append(LayerNorm(in_channels[i], data_format="channels_first"))
            inplanes = in_channels[i] if i == 0 else dec_channels[i]
            self._stages.append(BlockGroup(inplanes=inplanes,
                base_filter=dec_channels[i], num_blocks=dec_layers[i], block_type=block_types[i],
                query_shape=query_shape[i], key_expansion=1, value_expansion=2, num_heads=8, drop_path_prob=0.0))

            if i > 0:
                self._resized_fuses.append(ResizedFuse(
                    low_in_channels=dec_channels[i-1] * 4,
                    high_in_channels=in_channels[i],
                    out_channels=dec_channels[i]))


    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        ret = {}
        ret["input_shape"] = {
            k: v for k, v in input_shape.items() if k in cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.IN_FEATURES
        }
        ret["dec_layers"] = cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.DEC_LAYERS
        ret["dec_channels"] = cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.DEC_CHANNELS
        ret["layer_types"] = cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.LAYER_TYPES
        ret["drop_path_prob"] = cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.DROP_PATH_PROB 
        ret["spatial_shape"] = cfg.INPUT.IMAGE_SIZE # We expect the height == width
        return ret


    def forward_features(self, features):
        out = []
        multi_scale_features = []

        x = self._in_norms[0](features[self.in_features[0]])

        for idx in range(self.num_stages - 1):
            x = self._stages[idx](x)
            out.append(x)
            x = self._resized_fuses[idx](
                lowres_x=x,
                highres_x=self._in_norms[idx+1](features[self.in_features[idx+1]]))

        x = self._stages[-1](x)
        out.append(x)
        multi_scale_features = out[:3] # OS32, 16, 8, they are used for kmax_transformer_decoder.
        panoptic_features = out[-1] # OS4, it is used for final mask prediction.
        # OS 32, 8, 4
        semantic_features = [features[self.in_features[0]], features[self.in_features[2]], features[self.in_features[3]]]
        return panoptic_features, semantic_features, multi_scale_features