| import math |
| import torch |
| from torch import nn |
| from torch.nn import functional as F |
|
|
| from torch.nn import Conv1d |
| from torch.nn.utils import weight_norm, remove_weight_norm |
|
|
| import commons |
| from commons import init_weights, get_padding |
| from transforms import piecewise_rational_quadratic_transform |
|
|
|
|
| LRELU_SLOPE = 0.1 |
|
|
|
|
| class LayerNorm(nn.Module): |
| def __init__(self, channels, eps=1e-5): |
| super().__init__() |
| self.channels = channels |
| self.eps = eps |
|
|
| self.gamma = nn.Parameter(torch.ones(channels)) |
| self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
| def forward(self, x): |
| x = x.transpose(1, -1) |
| x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) |
| return x.transpose(1, -1) |
|
|
| |
| class ConvReluNorm(nn.Module): |
| def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): |
| super().__init__() |
| self.in_channels = in_channels |
| self.hidden_channels = hidden_channels |
| self.out_channels = out_channels |
| self.kernel_size = kernel_size |
| self.n_layers = n_layers |
| self.p_dropout = p_dropout |
| assert n_layers > 1, "Number of layers should be larger than 0." |
|
|
| self.conv_layers = nn.ModuleList() |
| self.norm_layers = nn.ModuleList() |
| self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) |
| self.norm_layers.append(LayerNorm(hidden_channels)) |
| self.relu_drop = nn.Sequential( |
| nn.ReLU(), |
| nn.Dropout(p_dropout)) |
| for _ in range(n_layers-1): |
| self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) |
| self.norm_layers.append(LayerNorm(hidden_channels)) |
| self.proj = nn.Conv1d(hidden_channels, out_channels, 1) |
| self.proj.weight.data.zero_() |
| self.proj.bias.data.zero_() |
|
|
| def forward(self, x, x_mask): |
| x_org = x |
| for i in range(self.n_layers): |
| x = self.conv_layers[i](x * x_mask) |
| x = self.norm_layers[i](x) |
| x = self.relu_drop(x) |
| x = x_org + self.proj(x) |
| return x * x_mask |
|
|
|
|
| class DDSConv(nn.Module): |
| """ |
| Dilated and Depth-Separable Convolution |
| """ |
| def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): |
| super().__init__() |
| self.channels = channels |
| self.kernel_size = kernel_size |
| self.n_layers = n_layers |
| self.p_dropout = p_dropout |
|
|
| self.drop = nn.Dropout(p_dropout) |
| self.convs_sep = nn.ModuleList() |
| self.convs_1x1 = nn.ModuleList() |
| self.norms_1 = nn.ModuleList() |
| self.norms_2 = nn.ModuleList() |
| for i in range(n_layers): |
| dilation = kernel_size ** i |
| padding = (kernel_size * dilation - dilation) // 2 |
| self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, |
| groups=channels, dilation=dilation, padding=padding |
| )) |
| self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) |
| self.norms_1.append(LayerNorm(channels)) |
| self.norms_2.append(LayerNorm(channels)) |
|
|
| def forward(self, x, x_mask, g=None): |
| if g is not None: |
| x = x + g |
| for i in range(self.n_layers): |
| y = self.convs_sep[i](x * x_mask) |
| y = self.norms_1[i](y) |
| y = F.gelu(y) |
| y = self.convs_1x1[i](y) |
| y = self.norms_2[i](y) |
| y = F.gelu(y) |
| y = self.drop(y) |
| x = x + y |
| return x * x_mask |
|
|
|
|
| class WN(torch.nn.Module): |
| def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): |
| super(WN, self).__init__() |
| assert(kernel_size % 2 == 1) |
| self.hidden_channels =hidden_channels |
| self.kernel_size = kernel_size, |
| self.dilation_rate = dilation_rate |
| self.n_layers = n_layers |
| self.gin_channels = gin_channels |
| self.p_dropout = p_dropout |
|
|
| self.in_layers = torch.nn.ModuleList() |
| self.res_skip_layers = torch.nn.ModuleList() |
| self.drop = nn.Dropout(p_dropout) |
|
|
| if gin_channels != 0: |
| cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) |
| self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') |
|
|
| for i in range(n_layers): |
| dilation = dilation_rate ** i |
| padding = int((kernel_size * dilation - dilation) / 2) |
| in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, |
| dilation=dilation, padding=padding) |
| in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') |
| self.in_layers.append(in_layer) |
|
|
| |
| if i < n_layers - 1: |
| res_skip_channels = 2 * hidden_channels |
| else: |
| res_skip_channels = hidden_channels |
|
|
| res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) |
| res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') |
| self.res_skip_layers.append(res_skip_layer) |
|
|
| def forward(self, x, x_mask, g=None, **kwargs): |
| output = torch.zeros_like(x) |
| n_channels_tensor = torch.IntTensor([self.hidden_channels]) |
|
|
| if g is not None: |
| g = self.cond_layer(g) |
|
|
| for i in range(self.n_layers): |
| x_in = self.in_layers[i](x) |
| if g is not None: |
| cond_offset = i * 2 * self.hidden_channels |
| g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] |
| else: |
| g_l = torch.zeros_like(x_in) |
|
|
| acts = commons.fused_add_tanh_sigmoid_multiply( |
| x_in, |
| g_l, |
| n_channels_tensor) |
| acts = self.drop(acts) |
|
|
| res_skip_acts = self.res_skip_layers[i](acts) |
| if i < self.n_layers - 1: |
| res_acts = res_skip_acts[:,:self.hidden_channels,:] |
| x = (x + res_acts) * x_mask |
| output = output + res_skip_acts[:,self.hidden_channels:,:] |
| else: |
| output = output + res_skip_acts |
| return output * x_mask |
|
|
| def remove_weight_norm(self): |
| if self.gin_channels != 0: |
| torch.nn.utils.remove_weight_norm(self.cond_layer) |
| for l in self.in_layers: |
| torch.nn.utils.remove_weight_norm(l) |
| for l in self.res_skip_layers: |
| torch.nn.utils.remove_weight_norm(l) |
|
|
|
|
| class ResBlock1(torch.nn.Module): |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): |
| super(ResBlock1, self).__init__() |
| self.convs1 = nn.ModuleList([ |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
| padding=get_padding(kernel_size, dilation[0]))), |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
| padding=get_padding(kernel_size, dilation[1]))), |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
| padding=get_padding(kernel_size, dilation[2]))) |
| ]) |
| self.convs1.apply(init_weights) |
|
|
| self.convs2 = nn.ModuleList([ |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
| padding=get_padding(kernel_size, 1))), |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
| padding=get_padding(kernel_size, 1))), |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
| padding=get_padding(kernel_size, 1))) |
| ]) |
| self.convs2.apply(init_weights) |
|
|
| def forward(self, x, x_mask=None): |
| for c1, c2 in zip(self.convs1, self.convs2): |
| xt = F.leaky_relu(x, LRELU_SLOPE) |
| if x_mask is not None: |
| xt = xt * x_mask |
| xt = c1(xt) |
| xt = F.leaky_relu(xt, LRELU_SLOPE) |
| if x_mask is not None: |
| xt = xt * x_mask |
| xt = c2(xt) |
| x = xt + x |
| if x_mask is not None: |
| x = x * x_mask |
| return x |
|
|
| def remove_weight_norm(self): |
| for l in self.convs1: |
| remove_weight_norm(l) |
| for l in self.convs2: |
| remove_weight_norm(l) |
|
|
|
|
| class ResBlock2(torch.nn.Module): |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3)): |
| super(ResBlock2, self).__init__() |
| self.convs = nn.ModuleList([ |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
| padding=get_padding(kernel_size, dilation[0]))), |
| weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
| padding=get_padding(kernel_size, dilation[1]))) |
| ]) |
| self.convs.apply(init_weights) |
|
|
| def forward(self, x, x_mask=None): |
| for c in self.convs: |
| xt = F.leaky_relu(x, LRELU_SLOPE) |
| if x_mask is not None: |
| xt = xt * x_mask |
| xt = c(xt) |
| x = xt + x |
| if x_mask is not None: |
| x = x * x_mask |
| return x |
|
|
| def remove_weight_norm(self): |
| for l in self.convs: |
| remove_weight_norm(l) |
|
|
|
|
| class Log(nn.Module): |
| def forward(self, x, x_mask, reverse=False, **kwargs): |
| if not reverse: |
| y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask |
| logdet = torch.sum(-y, [1, 2]) |
| return y, logdet |
| else: |
| x = torch.exp(x) * x_mask |
| return x |
| |
|
|
| class Flip(nn.Module): |
| def forward(self, x, *args, reverse=False, **kwargs): |
| x = torch.flip(x, [1]) |
| if not reverse: |
| logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) |
| return x, logdet |
| else: |
| return x |
|
|
|
|
| class ElementwiseAffine(nn.Module): |
| def __init__(self, channels): |
| super().__init__() |
| self.channels = channels |
| self.m = nn.Parameter(torch.zeros(channels,1)) |
| self.logs = nn.Parameter(torch.zeros(channels,1)) |
|
|
| def forward(self, x, x_mask, reverse=False, **kwargs): |
| if not reverse: |
| y = self.m + torch.exp(self.logs) * x |
| y = y * x_mask |
| logdet = torch.sum(self.logs * x_mask, [1,2]) |
| return y, logdet |
| else: |
| x = (x - self.m) * torch.exp(-self.logs) * x_mask |
| return x |
|
|
|
|
| class ResidualCouplingLayer(nn.Module): |
| def __init__(self, |
| channels, |
| hidden_channels, |
| kernel_size, |
| dilation_rate, |
| n_layers, |
| p_dropout=0, |
| gin_channels=0, |
| mean_only=False): |
| assert channels % 2 == 0, "channels should be divisible by 2" |
| super().__init__() |
| self.channels = channels |
| self.hidden_channels = hidden_channels |
| self.kernel_size = kernel_size |
| self.dilation_rate = dilation_rate |
| self.n_layers = n_layers |
| self.half_channels = channels // 2 |
| self.mean_only = mean_only |
|
|
| self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) |
| self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) |
| self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) |
| self.post.weight.data.zero_() |
| self.post.bias.data.zero_() |
|
|
| def forward(self, x, x_mask, g=None, reverse=False): |
| x0, x1 = torch.split(x, [self.half_channels]*2, 1) |
| h = self.pre(x0) * x_mask |
| h = self.enc(h, x_mask, g=g) |
| stats = self.post(h) * x_mask |
| if not self.mean_only: |
| m, logs = torch.split(stats, [self.half_channels]*2, 1) |
| else: |
| m = stats |
| logs = torch.zeros_like(m) |
|
|
| if not reverse: |
| x1 = m + x1 * torch.exp(logs) * x_mask |
| x = torch.cat([x0, x1], 1) |
| logdet = torch.sum(logs, [1,2]) |
| return x, logdet |
| else: |
| x1 = (x1 - m) * torch.exp(-logs) * x_mask |
| x = torch.cat([x0, x1], 1) |
| return x |
|
|
|
|
| class ConvFlow(nn.Module): |
| def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): |
| super().__init__() |
| self.in_channels = in_channels |
| self.filter_channels = filter_channels |
| self.kernel_size = kernel_size |
| self.n_layers = n_layers |
| self.num_bins = num_bins |
| self.tail_bound = tail_bound |
| self.half_channels = in_channels // 2 |
|
|
| self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) |
| self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.) |
| self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) |
| self.proj.weight.data.zero_() |
| self.proj.bias.data.zero_() |
|
|
| def forward(self, x, x_mask, g=None, reverse=False): |
| x0, x1 = torch.split(x, [self.half_channels]*2, 1) |
| h = self.pre(x0) |
| h = self.convs(h, x_mask, g=g) |
| h = self.proj(h) * x_mask |
|
|
| b, c, t = x0.shape |
| h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) |
|
|
| unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels) |
| unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels) |
| unnormalized_derivatives = h[..., 2 * self.num_bins:] |
|
|
| x1, logabsdet = piecewise_rational_quadratic_transform(x1, |
| unnormalized_widths, |
| unnormalized_heights, |
| unnormalized_derivatives, |
| inverse=reverse, |
| tails='linear', |
| tail_bound=self.tail_bound |
| ) |
|
|
| x = torch.cat([x0, x1], 1) * x_mask |
| logdet = torch.sum(logabsdet * x_mask, [1,2]) |
| if not reverse: |
| return x, logdet |
| else: |
| return x |
|
|