|
import torch |
|
import numpy as np |
|
|
|
|
|
def get_word_inds(text: str, word_place: int, tokenizer): |
|
split_text = text.split(" ") |
|
if type(word_place) is str: |
|
word_place = [i for i, word in enumerate(split_text) if word_place == word] |
|
elif type(word_place) is int: |
|
word_place = [word_place] |
|
out = [] |
|
if len(word_place) > 0: |
|
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] |
|
cur_len, ptr = 0, 0 |
|
|
|
for i in range(len(words_encode)): |
|
cur_len += len(words_encode[i]) |
|
if ptr in word_place: |
|
out.append(i + 1) |
|
if cur_len >= len(split_text[ptr]): |
|
ptr += 1 |
|
cur_len = 0 |
|
return np.array(out) |
|
|
|
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): |
|
words_x = x.split(' ') |
|
words_y = y.split(' ') |
|
if len(words_x) != len(words_y): |
|
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length" |
|
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.") |
|
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] |
|
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] |
|
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] |
|
mapper = np.zeros((max_len, max_len)) |
|
i = j = 0 |
|
cur_inds = 0 |
|
while i < max_len and j < max_len: |
|
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: |
|
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] |
|
if len(inds_source_) == len(inds_target_): |
|
mapper[inds_source_, inds_target_] = 1 |
|
else: |
|
ratio = 1 / len(inds_target_) |
|
for i_t in inds_target_: |
|
mapper[inds_source_, i_t] = ratio |
|
cur_inds += 1 |
|
i += len(inds_source_) |
|
j += len(inds_target_) |
|
elif cur_inds < len(inds_source): |
|
mapper[i, j] = 1 |
|
i += 1 |
|
j += 1 |
|
else: |
|
mapper[j, j] = 1 |
|
i += 1 |
|
j += 1 |
|
|
|
return torch.from_numpy(mapper).float() |
|
|
|
def get_replacement_mapper(prompts, tokenizer, max_len=77): |
|
x_seq = prompts[0] |
|
mappers = [] |
|
for i in range(1, len(prompts)): |
|
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len) |
|
mappers.append(mapper) |
|
return torch.stack(mappers) |