File size: 25,409 Bytes
8ebb9ec
 
 
 
 
 
 
 
 
 
 
 
 
 
d93bc17
 
 
8ebb9ec
d93bc17
 
8ebb9ec
 
 
d93bc17
 
 
 
 
 
8ebb9ec
 
 
 
 
d93bc17
 
8ebb9ec
 
 
 
 
 
 
d93bc17
 
 
8ebb9ec
d93bc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ebb9ec
d93bc17
 
 
 
 
8ebb9ec
d93bc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ebb9ec
 
 
 
d93bc17
8ebb9ec
 
 
 
 
 
 
 
d93bc17
8ebb9ec
 
d93bc17
 
 
 
 
 
 
 
 
 
8ebb9ec
d93bc17
 
 
 
 
8ebb9ec
 
 
 
 
 
 
d93bc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import namedtuple
from copy import deepcopy
from typing import Sequence, Optional

import datasets
import evaluate

# TODO: Add BibTeX citation
_CITATION = """\
@misc{nereval,
  title={{NER-Evaluation}: Named Entity Evaluation as in SemEval 2013 task 9.1},
  url={https://github.com/davidsbatista/NER-Evaluation},
  note={Software available from https://github.com/davidsbatista/NER-Evaluation},
  author={Batista David},
  year={2018},
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
ner-eval is a Python frame for sequence labeling evaluation. I twas used in SemEval 2013 task 9.1.
It supports exact match, partial match, spurious and other errors.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: List of List of predicted labels (Estimated targets as returned by a tagger)
    references: List of List of reference labels (Ground truth (correct) target values)
    tags: List of tags to evaluate. default: None
Returns:
    'scores' dict. Summary of the scores for overall and each tag.
         {
            "overall": {
                "strict_precision": 0.0,
                "strict_recall": 0.0,
                "strict_f1": 0,
                "ent_type_precision": 0.0,
                "ent_type_recall": 0.0,
                "ent_type_f1": 0,
                "partial_precision": 0.0,
                "partial_recall": 0.0,
                "partial_f1": 0,
                "exact_precision": 0.0,
                "exact_recall": 0.0,
                "exact_f1": 0,
            },
            "ORG": {
                "strict_precision": 0.0,
                "strict_recall": 0.0,
                "strict_f1": 0,
                "ent_type_precision": 0.0,
                "ent_type_recall": 0.0,
                "ent_type_f1": 0,
                "partial_precision": 0.0,
                "partial_recall": 0.0,
                "partial_f1": 0,
                "exact_precision": 0.0,
                "exact_recall": 0.0,
                "exact_f1": 0,
            },
            "PER": {
                "strict_precision": 0.0,
                "strict_recall": 0.0,
                "strict_f1": 0,
                "ent_type_precision": 0.0,
                "ent_type_recall": 0.0,
                "ent_type_f1": 0,
                "partial_precision": 0.0,
                "partial_recall": 0.0,
                "partial_f1": 0,
                "exact_precision": 0.0,
                "exact_recall": 0.0,
                "exact_f1": 0,
            },
            "LOC": {
                "strict_precision": 0.0,
                "strict_recall": 0.0,
                "strict_f1": 0,
                "ent_type_precision": 0.0,
                "ent_type_recall": 0.0,
                "ent_type_f1": 0,
                "partial_precision": 0.0,
                "partial_recall": 0.0,
                "partial_f1": 0,
                "exact_precision": 0.0,
                "exact_recall": 0.0,
                "exact_f1": 0,
            },
        }
Examples:
    >>> my_new_module = evaluate.load("fschlatt/ner_eval")
    >>> results = my_new_module.compute(
    ...     references=[["B-LOC", "I-LOC", "I-LOC", "B-ORG", "I-ORG", "O", "B-PER", "I-PER", "I-PER", "O"]],
    ...     predictions=[["B-LOC", "I-LOC", "O", "O", "B-ORG", "I-ORG", "O", "B-PER", "I-PER", "O"]]
    ... )
    >>> print(results)
    {
        "overall": {
            "strict_precision": 0.0,
            "strict_recall": 0.0,
            "strict_f1": 0,
            "ent_type_precision": 2 / 3,
            "ent_type_recall": 2 / 3,
            "ent_type_f1": 2 / 3,
            "partial_precision": 1 / 3,
            "partial_recall": 1 / 3,
            "partial_f1": 1 / 3,
            "exact_precision": 0.0,
            "exact_recall": 0.0,
            "exact_f1": 0,
        },
        "ORG": {
            "strict_precision": 0.0,
            "strict_recall": 0.0,
            "strict_f1": 0,
            "ent_type_precision": 0.0,
            "ent_type_recall": 0.0,
            "ent_type_f1": 0,
            "partial_precision": 0.0,
            "partial_recall": 0.0,
            "partial_f1": 0,
            "exact_precision": 0.0,
            "exact_recall": 0.0,
            "exact_f1": 0,
        },
        "PER": {
            "strict_precision": 0.0,
            "strict_recall": 0.0,
            "strict_f1": 0,
            "ent_type_precision": 0.5,
            "ent_type_recall": 1.0,
            "ent_type_f1": 2 / 3,
            "partial_precision": 0.25,
            "partial_recall": 0.5,
            "partial_f1": 1 / 3,
            "exact_precision": 0.0,
            "exact_recall": 0.0,
            "exact_f1": 0,
        },
        "LOC": {
            "strict_precision": 0.0,
            "strict_recall": 0.0,
            "strict_f1": 0,
            "ent_type_precision": 0.5,
            "ent_type_recall": 1.0,
            "ent_type_f1": 2 / 3,
            "partial_precision": 0.25,
            "partial_recall": 0.5,
            "partial_f1": 1 / 3,
            "exact_precision": 0.0,
            "exact_recall": 0.0,
            "exact_f1": 0,
        }
    }
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class NEREval(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage="https://github.com/davidsbatista/NER-Evaluation",
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(
                        datasets.Value("string", id="label"), id="sequence"
                    ),
                    "references": datasets.Sequence(
                        datasets.Value("string", id="label"), id="sequence"
                    ),
                }
            ),
            # Additional links to the codebase or references
            codebase_urls=["https://github.com/davidsbatista/NER-Evaluation"],
            reference_urls=[
                "https://github.com/davidsbatista/NER-Evaluation",
                "https://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/",
            ],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(
        self,
        predictions: Sequence[Sequence[str]],
        references: Sequence[Sequence[str]],
        tags: Optional[Sequence[str]] = None,
        modes: Optional[Sequence[str]] = None,
    ):
        if tags is None:
            tags = list(parse_tags(predictions).union(parse_tags(references)))

        evaluator = Evaluator(predictions, references, tags)
        results, agg_results = evaluator.evaluate()

        out = {"overall": parse_results(results, modes)}
        for tag, tag_result in agg_results.items():
            out = {**out, tag: parse_results(tag_result, modes)}

        return out


def parse_results(results, modes: Optional[Sequence[str]] = None):
    if modes is None:
        modes = ["strict", "ent_type", "partial", "exact"]

    out = {}
    for mode in modes:
        out[f"{mode}_precision"] = results[mode]["precision"]
        out[f"{mode}_recall"] = results[mode]["recall"]
        out[f"{mode}_f1"] = results[mode]["f1"]
    return out


def parse_tags(tokens: Sequence[Sequence[str]]):
    tags = set()
    for seq in tokens:
        for t in seq:
            tags.add(t.split("-")[-1])
    tags.discard("O")
    return tags


Entity = namedtuple("Entity", "e_type start_offset end_offset")


class Evaluator:
    def __init__(self, true, pred, tags):
        """ """

        if len(true) != len(pred):
            raise ValueError("Number of predicted documents does not equal true")

        self.true = true
        self.pred = pred
        self.tags = tags

        # Setup dict into which metrics will be stored.

        self.metrics_results = {
            "correct": 0,
            "incorrect": 0,
            "partial": 0,
            "missed": 0,
            "spurious": 0,
            "possible": 0,
            "actual": 0,
            "precision": 0,
            "recall": 0,
        }

        # Copy results dict to cover the four schemes.

        self.results = {
            "strict": deepcopy(self.metrics_results),
            "ent_type": deepcopy(self.metrics_results),
            "partial": deepcopy(self.metrics_results),
            "exact": deepcopy(self.metrics_results),
        }

        # Create an accumulator to store results

        self.evaluation_agg_entities_type = {e: deepcopy(self.results) for e in tags}

    def evaluate(self):
        for true_ents, pred_ents in zip(self.true, self.pred):
            # Check that the length of the true and predicted examples are the
            # same. This must be checked here, because another error may not
            # be thrown if the lengths do not match.

            if len(true_ents) != len(pred_ents):
                raise ValueError("Prediction length does not match true example length")

            # Compute results for one message

            tmp_results, tmp_agg_results = compute_metrics(
                collect_named_entities(true_ents),
                collect_named_entities(pred_ents),
                self.tags,
            )

            # Cycle through each result and accumulate

            # TODO: Combine these loops below:

            for eval_schema in self.results:
                for metric in self.results[eval_schema]:
                    self.results[eval_schema][metric] += tmp_results[eval_schema][
                        metric
                    ]

            # Calculate global precision and recall

            self.results = compute_precision_recall_f1_wrapper(self.results)

            # Aggregate results by entity type

            for e_type in self.tags:
                for eval_schema in tmp_agg_results[e_type]:
                    for metric in tmp_agg_results[e_type][eval_schema]:
                        self.evaluation_agg_entities_type[e_type][eval_schema][
                            metric
                        ] += tmp_agg_results[e_type][eval_schema][metric]

                # Calculate precision recall at the individual entity level

                self.evaluation_agg_entities_type[
                    e_type
                ] = compute_precision_recall_f1_wrapper(
                    self.evaluation_agg_entities_type[e_type]
                )

        return self.results, self.evaluation_agg_entities_type


def collect_named_entities(tokens):
    """
    Creates a list of Entity named-tuples, storing the entity type and the start and end
    offsets of the entity.

    :param tokens: a list of tags
    :return: a list of Entity named-tuples
    """

    named_entities = []
    start_offset = None
    end_offset = None
    ent_type = None

    for offset, token_tag in enumerate(tokens):
        if token_tag == "O":
            if ent_type is not None and start_offset is not None:
                end_offset = offset - 1
                named_entities.append(Entity(ent_type, start_offset, end_offset))
                start_offset = None
                end_offset = None
                ent_type = None

        elif ent_type is None:
            ent_type = token_tag[2:]
            start_offset = offset

        elif ent_type != token_tag[2:] or (
            ent_type == token_tag[2:] and token_tag[:1] == "B"
        ):
            end_offset = offset - 1
            named_entities.append(Entity(ent_type, start_offset, end_offset))

            # start of a new entity
            ent_type = token_tag[2:]
            start_offset = offset
            end_offset = None

    # catches an entity that goes up until the last token

    if ent_type is not None and start_offset is not None and end_offset is None:
        named_entities.append(Entity(ent_type, start_offset, len(tokens) - 1))

    return named_entities


def compute_metrics(true_named_entities, pred_named_entities, tags):
    eval_metrics = {
        "correct": 0,
        "incorrect": 0,
        "partial": 0,
        "missed": 0,
        "spurious": 0,
        "precision": 0,
        "recall": 0,
    }

    # overall results

    evaluation = {
        "strict": deepcopy(eval_metrics),
        "ent_type": deepcopy(eval_metrics),
        "partial": deepcopy(eval_metrics),
        "exact": deepcopy(eval_metrics),
    }

    # results by entity type

    evaluation_agg_entities_type = {e: deepcopy(evaluation) for e in tags}

    # keep track of entities that overlapped

    true_which_overlapped_with_pred = []

    # Subset into only the tags that we are interested in.
    # NOTE: we remove the tags we don't want from both the predicted and the
    # true entities. This covers the two cases where mismatches can occur:
    #
    # 1) Where the model predicts a tag that is not present in the true data
    # 2) Where there is a tag in the true data that the model is not capable of
    # predicting.

    true_named_entities = [ent for ent in true_named_entities if ent.e_type in tags]
    pred_named_entities = [ent for ent in pred_named_entities if ent.e_type in tags]

    # go through each predicted named-entity

    for pred in pred_named_entities:
        found_overlap = False

        # Check each of the potential scenarios in turn. See
        # http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/
        # for scenario explanation.

        # Scenario I: Exact match between true and pred

        if pred in true_named_entities:
            true_which_overlapped_with_pred.append(pred)
            evaluation["strict"]["correct"] += 1
            evaluation["ent_type"]["correct"] += 1
            evaluation["exact"]["correct"] += 1
            evaluation["partial"]["correct"] += 1

            # for the agg. by e_type results
            evaluation_agg_entities_type[pred.e_type]["strict"]["correct"] += 1
            evaluation_agg_entities_type[pred.e_type]["ent_type"]["correct"] += 1
            evaluation_agg_entities_type[pred.e_type]["exact"]["correct"] += 1
            evaluation_agg_entities_type[pred.e_type]["partial"]["correct"] += 1

        else:
            # check for overlaps with any of the true entities

            for true in true_named_entities:
                pred_range = range(pred.start_offset, pred.end_offset)
                true_range = range(true.start_offset, true.end_offset)

                # Scenario IV: Offsets match, but entity type is wrong

                if (
                    true.start_offset == pred.start_offset
                    and pred.end_offset == true.end_offset
                    and true.e_type != pred.e_type
                ):
                    # overall results
                    evaluation["strict"]["incorrect"] += 1
                    evaluation["ent_type"]["incorrect"] += 1
                    evaluation["partial"]["correct"] += 1
                    evaluation["exact"]["correct"] += 1

                    # aggregated by entity type results
                    evaluation_agg_entities_type[true.e_type]["strict"][
                        "incorrect"
                    ] += 1
                    evaluation_agg_entities_type[true.e_type]["ent_type"][
                        "incorrect"
                    ] += 1
                    evaluation_agg_entities_type[true.e_type]["partial"]["correct"] += 1
                    evaluation_agg_entities_type[true.e_type]["exact"]["correct"] += 1

                    true_which_overlapped_with_pred.append(true)
                    found_overlap = True

                    break

                # check for an overlap i.e. not exact boundary match, with true entities

                elif find_overlap(true_range, pred_range):
                    true_which_overlapped_with_pred.append(true)

                    # Scenario V: There is an overlap (but offsets do not match
                    # exactly), and the entity type is the same.
                    # 2.1 overlaps with the same entity type

                    if pred.e_type == true.e_type:
                        # overall results
                        evaluation["strict"]["incorrect"] += 1
                        evaluation["ent_type"]["correct"] += 1
                        evaluation["partial"]["partial"] += 1
                        evaluation["exact"]["incorrect"] += 1

                        # aggregated by entity type results
                        evaluation_agg_entities_type[true.e_type]["strict"][
                            "incorrect"
                        ] += 1
                        evaluation_agg_entities_type[true.e_type]["ent_type"][
                            "correct"
                        ] += 1
                        evaluation_agg_entities_type[true.e_type]["partial"][
                            "partial"
                        ] += 1
                        evaluation_agg_entities_type[true.e_type]["exact"][
                            "incorrect"
                        ] += 1

                        found_overlap = True

                        break

                    # Scenario VI: Entities overlap, but the entity type is
                    # different.

                    else:
                        # overall results
                        evaluation["strict"]["incorrect"] += 1
                        evaluation["ent_type"]["incorrect"] += 1
                        evaluation["partial"]["partial"] += 1
                        evaluation["exact"]["incorrect"] += 1

                        # aggregated by entity type results
                        # Results against the true entity

                        evaluation_agg_entities_type[true.e_type]["strict"][
                            "incorrect"
                        ] += 1
                        evaluation_agg_entities_type[true.e_type]["partial"][
                            "partial"
                        ] += 1
                        evaluation_agg_entities_type[true.e_type]["ent_type"][
                            "incorrect"
                        ] += 1
                        evaluation_agg_entities_type[true.e_type]["exact"][
                            "incorrect"
                        ] += 1

                        # Results against the predicted entity

                        # evaluation_agg_entities_type[pred.e_type]['strict']['spurious'] += 1

                        found_overlap = True

                        break

            # Scenario II: Entities are spurious (i.e., over-generated).

            if not found_overlap:
                # Overall results

                evaluation["strict"]["spurious"] += 1
                evaluation["ent_type"]["spurious"] += 1
                evaluation["partial"]["spurious"] += 1
                evaluation["exact"]["spurious"] += 1

                # Aggregated by entity type results

                # NOTE: when pred.e_type is not found in tags
                # or when it simply does not appear in the test set, then it is
                # spurious, but it is not clear where to assign it at the tag
                # level. In this case, it is applied to all target_tags
                # found in this example. This will mean that the sum of the
                # evaluation_agg_entities will not equal evaluation.

                for true in tags:
                    evaluation_agg_entities_type[true]["strict"]["spurious"] += 1
                    evaluation_agg_entities_type[true]["ent_type"]["spurious"] += 1
                    evaluation_agg_entities_type[true]["partial"]["spurious"] += 1
                    evaluation_agg_entities_type[true]["exact"]["spurious"] += 1

    # Scenario III: Entity was missed entirely.

    for true in true_named_entities:
        if true in true_which_overlapped_with_pred:
            continue
        else:
            # overall results
            evaluation["strict"]["missed"] += 1
            evaluation["ent_type"]["missed"] += 1
            evaluation["partial"]["missed"] += 1
            evaluation["exact"]["missed"] += 1

            # for the agg. by e_type
            evaluation_agg_entities_type[true.e_type]["strict"]["missed"] += 1
            evaluation_agg_entities_type[true.e_type]["ent_type"]["missed"] += 1
            evaluation_agg_entities_type[true.e_type]["partial"]["missed"] += 1
            evaluation_agg_entities_type[true.e_type]["exact"]["missed"] += 1

    # Compute 'possible', 'actual' according to SemEval-2013 Task 9.1 on the
    # overall results, and use these to calculate precision and recall.

    for eval_type in evaluation:
        evaluation[eval_type] = compute_actual_possible(evaluation[eval_type])

    # Compute 'possible', 'actual', and precision and recall on entity level
    # results. Start by cycling through the accumulated results.

    for entity_type, entity_level in evaluation_agg_entities_type.items():
        # Cycle through the evaluation types for each dict containing entity
        # level results.

        for eval_type in entity_level:
            evaluation_agg_entities_type[entity_type][
                eval_type
            ] = compute_actual_possible(entity_level[eval_type])

    return evaluation, evaluation_agg_entities_type


def find_overlap(true_range, pred_range):
    """Find the overlap between two ranges

    Find the overlap between two ranges. Return the overlapping values if
    present, else return an empty set().

    Examples:

    >>> find_overlap((1, 2), (2, 3))
    2
    >>> find_overlap((1, 2), (3, 4))
    set()
    """

    true_set = set(true_range)
    pred_set = set(pred_range)

    overlaps = true_set.intersection(pred_set)

    return overlaps


def compute_actual_possible(results):
    """
    Takes a result dict that has been output by compute metrics.
    Returns the results dict with actual, possible populated.

    When the results dicts is from partial or ent_type metrics, then
    partial_or_type=True to ensure the right calculation is used for
    calculating precision and recall.
    """

    correct = results["correct"]
    incorrect = results["incorrect"]
    partial = results["partial"]
    missed = results["missed"]
    spurious = results["spurious"]

    # Possible: number annotations in the gold-standard which contribute to the
    # final score

    possible = correct + incorrect + partial + missed

    # Actual: number of annotations produced by the NER system

    actual = correct + incorrect + partial + spurious

    results["actual"] = actual
    results["possible"] = possible

    return results


def compute_precision_recall_f1(results, partial_or_type=False):
    """
    Takes a result dict that has been output by compute metrics.
    Returns the results dict with precison and recall populated.

    When the results dicts is from partial or ent_type metrics, then
    partial_or_type=True to ensure the right calculation is used for
    calculating precision and recall.
    """

    actual = results["actual"]
    possible = results["possible"]
    partial = results["partial"]
    correct = results["correct"]

    if partial_or_type:
        precision = (correct + 0.5 * partial) / actual if actual > 0 else 0
        recall = (correct + 0.5 * partial) / possible if possible > 0 else 0

    else:
        precision = correct / actual if actual > 0 else 0
        recall = correct / possible if possible > 0 else 0

    results["precision"] = precision
    results["recall"] = recall
    results["f1"] = (
        precision * recall * 2 / (precision + recall) if precision + recall > 0 else 0
    )

    return results


def compute_precision_recall_f1_wrapper(results):
    """
    Wraps the compute_precision_recall_f1 function and runs on a dict of results
    """

    results_a = {
        key: compute_precision_recall_f1(value, True)
        for key, value in results.items()
        if key in ["partial", "ent_type"]
    }
    results_b = {
        key: compute_precision_recall_f1(value)
        for key, value in results.items()
        if key in ["strict", "exact"]
    }

    results = {**results_a, **results_b}

    return results