from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import pandas as pd import numpy as np import pickle import xgboost import random import os from .utils.evaluation import AudioEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from .utils.preprocess import resample_audio, create_mel_spectrogram from dotenv import load_dotenv load_dotenv() router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/audio" @router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION) async def evaluate_audio(request: AudioEvaluationRequest): """ Evaluate audio classification for rainforest sound detection. Current Model: Random Baseline - Makes random predictions from the label space (0-1) - Used as a baseline for comparison """ # Get space info print("start audio") username, space_url = get_space_info() print(username) print(space_url) # Define the label mapping LABEL_MAPPING = { "chainsaw": 0, "environment": 1 } # Load and prepare the dataset # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) # Split dataset test = dataset["test"] #preprocess data: resample data to be on the same sampling rate target_sr = 12000 test_df = pd.DataFrame(test) test_df["array"] = test_df["audio"].apply(lambda x: x['array']) test_df["sampling_rate"] = test_df["audio"].apply(lambda x: x['sampling_rate']) test_df["resampled_array"] = test_df.apply( lambda row: resample_audio(row["array"], row["sampling_rate"], target_sr=target_sr), axis=1 ) test_df["sampling_rate"] = target_sr features = [] for idx, row in test_df.iterrows(): features.append(create_mel_spectrogram(row['resampled_array'], row['sampling_rate'])) # Convert features to a numpy array and add to the DataFrame test_df['basic_melspect'] = features # Filter on samples with the same mel spectogram shape test_df["shape"] = test_df['basic_melspect'].apply(lambda x: x.shape[1]) test_df = test_df[test_df["shape"]==71] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) with open("./train_models/xgboost_audio_model.pkl", "rb") as f: loaded_model = pickle.load(f) # Flatten Mel Spectrograms into 1D Features test_df["flattened_mel"] = test_df["basic_melspect"].apply(lambda x: x.flatten()) # Convert to NumPy arrays X = np.stack(test_df["flattened_mel"].values) # Features y = test_df["label"].values # Labels (0: chainsaw, 1: rainforest) dtest = xgboost.DMatrix(X, label=y) # Make Predictions y_pred_probs = loaded_model.predict(dtest) y_pred = (y_pred_probs > 0.5).astype(int) # Convert probabilities to binary labels #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(y, y_pred) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results