lgai / app.py
fridayfringe's picture
Create app.py
8d91e6c verified
import gradio as gr
import torch
from model import GPT, GPTConfig
import tiktoken
# Load model
device = "cuda" if torch.cuda.is_available() else "cpu"
config = GPTConfig()
model = GPT(config)
model.load_state_dict(torch.load("model.pth", map_location=torch.device(device)))
model.eval()
# Tokenizer
enc = tiktoken.get_encoding("gpt2")
# Function for text generation
def generate_text(prompt, max_length=100):
tokens = enc.encode(prompt)
tokens = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(device)
with torch.no_grad():
for _ in range(max_length):
logits, _ = model(tokens)
logits = logits[:, -1, :]
probs = torch.nn.functional.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, 1)
tokens = torch.cat([tokens, next_token], dim=1)
return enc.decode(tokens.squeeze().tolist())
# Gradio UI
iface = gr.Interface(
fn=generate_text,
inputs=["text", gr.Slider(50, 500, step=10, label="Max Length")],
outputs="text",
title="My GPT Model",
description="Enter a prompt and generate text using my GPT model."
)
iface.launch()