Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,140 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from huggingface_hub import login
|
4 |
+
from datasets import load_dataset
|
5 |
+
import chromadb
|
6 |
+
import torch
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
import os
|
9 |
|
10 |
"""
|
11 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
12 |
"""
|
13 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
14 |
|
15 |
+
# ChromaDB Setup (Persistent Client)
|
16 |
+
CHROMA_DB_PATH = "new_hadith_rag_source" # Directory to store ChromaDB data
|
17 |
+
client = chromadb.PersistentClient(path=CHROMA_DB_PATH)
|
18 |
|
19 |
+
COLLECTION_NAME = "hadiths_new_complete"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Function to load or create the ChromaDB collection
|
22 |
+
def load_or_create_collection():
|
23 |
+
try:
|
24 |
+
collection = client.get_collection(name=COLLECTION_NAME)
|
25 |
+
print("Collection loaded successfully.")
|
26 |
+
return collection
|
27 |
+
except ValueError: # Collection doesn't exist
|
28 |
+
print("Creating new collection...")
|
29 |
+
collection = client.create_collection(name=COLLECTION_NAME, overwrite=True)
|
30 |
|
31 |
+
# Load data and add to the collection
|
32 |
+
ds = load_dataset("rwmasood/hadith-qa-pair")
|
33 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
34 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2').to(device) # Using a local name to avoid shadowing
|
35 |
|
36 |
+
for split in ds.keys():
|
37 |
+
documents = [
|
38 |
+
f"Hadith: {row['hadith-eng']}\nQuestion: {row['question']}\nReference: {row['reference']}"
|
39 |
+
for row in ds[split]
|
40 |
+
]
|
41 |
+
ids = [f"{split}_{i}" for i in range(len(documents))]
|
42 |
|
43 |
+
# Compute embeddings using CUDA
|
44 |
+
embeddings = embedding_model.encode(documents, convert_to_tensor=True, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
collection.add(
|
47 |
+
documents=documents,
|
48 |
+
ids=ids,
|
49 |
+
embeddings=embeddings.cpu().numpy()
|
50 |
+
)
|
51 |
|
52 |
+
print(f"Collection created with {collection.count()} documents.")
|
53 |
+
return collection
|
54 |
|
55 |
+
# Load or create the collection
|
56 |
+
collection = load_or_create_collection()
|
57 |
+
|
58 |
+
# Debugging print
|
59 |
+
print(f"Number of documents in collection: {collection.count()}")
|
60 |
+
|
61 |
+
# Model and Tokenizer Loading
|
62 |
+
model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
+
llm = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16, pad_token_id=tokenizer.eos_token_id)
|
65 |
+
|
66 |
+
# Embedding Model
|
67 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
68 |
+
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
|
69 |
+
|
70 |
+
|
71 |
+
# Helper Functions (Querying, Generation, Grading) - No changes needed
|
72 |
+
def query_collection(query_text, top_k=3):
|
73 |
+
query_embedding = model.encode(query_text, convert_to_tensor=True, device=device).cpu().numpy()
|
74 |
+
results = collection.query(
|
75 |
+
query_embeddings=[query_embedding],
|
76 |
+
n_results=top_k
|
77 |
+
)
|
78 |
+
return results
|
79 |
+
|
80 |
+
def speculative_generation(context, question, num_candidates=3):
|
81 |
+
responses = []
|
82 |
+
for _ in range(num_candidates):
|
83 |
+
prompt = f"Context:\n{context}\n\nQuestion:\n{question}\n\nAnswer:"
|
84 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
85 |
+
try:
|
86 |
+
outputs = llm.generate(**inputs, max_length=2048, num_return_sequences=1, num_beams=5, temperature=0.9, pad_token_id=tokenizer.eos_token_id)
|
87 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
+
responses.append(response)
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Error during generation: {e}")
|
91 |
+
responses.append("An error occurred during generation.")
|
92 |
+
return responses
|
93 |
+
|
94 |
+
def grade_responses(responses, query):
|
95 |
+
best_score = -1
|
96 |
+
best_response = ""
|
97 |
+
for response in responses:
|
98 |
+
score = 0
|
99 |
+
score += sum(1 for word in query.lower().split() if word in response.lower())
|
100 |
+
query_embedding = model.encode(query, convert_to_tensor=True, device=device)
|
101 |
+
response_embedding = model.encode(response, convert_to_tensor=True, device=device)
|
102 |
+
similarity = torch.nn.functional.cosine_similarity(query_embedding, response_embedding, dim=0).item()
|
103 |
+
score += similarity * 10
|
104 |
+
if score > best_score:
|
105 |
+
best_score = score
|
106 |
+
best_response = response
|
107 |
+
return best_response
|
108 |
+
|
109 |
+
def chatbot_response(user_query, top_k=3, num_candidates=3):
|
110 |
+
results = query_collection(user_query, top_k)
|
111 |
+
context = "\n\n".join(results['documents'][0])
|
112 |
+
speculative_responses = speculative_generation(context, user_query, num_candidates)
|
113 |
+
best_response = grade_responses(speculative_responses, user_query)
|
114 |
+
return best_response
|
115 |
+
|
116 |
+
# Chatbot Function (Adjusted for Error Handling and Default Message)
|
117 |
+
def chatbot(query):
|
118 |
+
if not query.strip():
|
119 |
+
return "Please ask a question about hadiths."
|
120 |
+
|
121 |
+
try:
|
122 |
+
answer = chatbot_response(query)
|
123 |
+
if "don't know" in answer.lower() or "not sure" in answer.lower():
|
124 |
+
return "Sorry. I don't have information about the hadiths related. It might be a dhoif, or maudhu, or I just don't have the knowledge."
|
125 |
+
else:
|
126 |
+
return answer
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error in chatbot: {e}")
|
129 |
+
return f"An error occurred: {e}"
|
130 |
+
|
131 |
+
# Gradio Interface
|
132 |
+
if __name__ == "__main__": # Ensures this only runs when the script is executed directly
|
133 |
+
iface = gr.Interface(
|
134 |
+
fn=chatbot,
|
135 |
+
inputs=gr.Textbox(lines=7, placeholder="Ask me a question about hadiths...", label="Question"),
|
136 |
+
outputs=gr.Textbox(label="Answer"),
|
137 |
+
title="Hadith QA Chatbot",
|
138 |
+
description="Ask questions related to Hadiths."
|
139 |
+
)
|
140 |
+
iface.launch()
|