import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")

import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image

import gradio as gr

from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop
from pymatting import cutout


model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)

fl_ = ""
fl_mask = ""


def do_interpolation(frame1, frame2, interpolation, n):
    print("tween frames: " + str(interpolation))
    print(frame1, frame2)
    input_frames = [frame1, frame2]
    frames = list(
        util.interpolate_recursively_from_files(
            input_frames, int(interpolation), interpolator))
    
    #print(frames)
    mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25)
    return f"{n}_to_{n+1}_out.mp4"
    
def get_frames(video_in, step, name, n):
    frames = []
    cap = cv2.VideoCapture(video_in)
    cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cfps = int(cap.get(cv2.CAP_PROP_FPS))
    print(f'frames: {cframes}, fps: {cfps}')

    #resize the video
    #clip = VideoFileClip(video_in)
    
    #check fps
    #if cfps > 25:
    #    print("video rate is over 25, resetting to 25")
    #    clip_resized = clip.resize(height=1024)
    #    clip_resized.write_videofile("video_resized.mp4", fps=25)
    #else:
    #    print("video rate is OK")
    #    clip_resized = clip.resize(height=1024)
    #    clip_resized.write_videofile("video_resized.mp4", fps=cfps)
    
    #print("video resized to 1024 height")
    
    # Opens the Video file with CV2
    #cap = cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        #if resize_w > 0:
          #resize_h = resize_w / 2.0
          #frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
        
        cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame)
        frames.append(f"{str(n)}_{name}_{step}{str(i)}.png")
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps


def create_video(frames, fps, type):
    print("building video result")
    imgs = []
    for j, img in enumerate(frames):
        imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))

    mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
    return type + "_result.mp4"

    
def infer(f_in, interpolation, fps_output):
    
    fps_output = logscale(fps_output)
    # 1. break video into frames and get FPS
    #break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
    frames_list = f_in #break_vid[0]
    fps = 1 #break_vid[1]
    print(f"ORIGIN FPS: {fps}")
    n_frame = int(300) #limited to 300 frames
    #n_frame = len(frames_list)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    # 2. prepare frames result arrays
    result_frames = []
    print("set stop frames to: " + str(n_frame))

    for idx, frame in enumerate(frames_list[0:int(n_frame)]):
        if idx < len(frames_list) - 1:
            next_frame = frames_list[idx+1]

            interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames
            break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1)
            print(break_interpolated_video[0])
            for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
                print(f"IMG:{img}")
                os.rename(img, f"{idx}_to_{idx+1}_{j}.png")
                result_frames.append(f"{idx}_to_{idx+1}_{j}.png")
            
            print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
            #print(f"CURRENT FRAMES: {result_frames}")
    result_frames.append(f"{frames_list[n_frame-1]}")
    final_vid = create_video(result_frames, fps_output, "interpolated")

    files = final_vid
    print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames)))
    cv2.destroyAllWindows()

    return final_vid, files


def logscale(linear):
    return int(math.pow(2, linear))

def linscale(linear):
    return int(math.log2(linear))

def remove_bg(fl, count, mh, ms, md, lm, b, d):
    global fl_
    fr = cv2.imread(fl).astype(np.uint8)
    
    #b = 3
    #element = cv2.getStructuringElement(cv2.MORPH_RECT, (2 * b + 1, 2 * b + 1), (b, b))
    
    n = int((fr.shape[0]*fr.shape[1]) / (256*256))
    fr_bg = cv2.medianBlur(fr, 255)
    
    for i in range(0, n):
        fr_bg = cv2.medianBlur(fr_bg, 255)
        
    fr_diff = cv2.convertScaleAbs(fr.astype(np.int16)-fr_bg.astype(np.int16)).astype(np.uint8)
    hsv = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2HSV) # range: 180, 255, 255
    
    fr_diff = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2GRAY)
    
    if lm == "median":
        mh = np.median(hsv[:,:,0])
        ms = np.median(hsv[:,:,1])
        md = np.median(hsv[:,:,2])
    elif lm == "average":
        mh = np.average(hsv[:,:,0])
        ms = np.average(hsv[:,:,1])
        md = np.average(hsv[:,:,2])
    bg = cv2.inRange(hsv, np.array([0,0,0]), np.array([mh,ms,md]))
    fr_diff[bg>0] = 0
    fr_diff[bg==0] = 255
    
    cv2.rectangle(fr_diff,(0,0),(fr_diff.shape[1]-1,fr_diff.shape[0]-1),(255,255,255),1)
    mask = cv2.floodFill(fr_diff, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv.FLOODFILL_FIXED_RANGE | cv.FLOODFILL_MASK_ONLY | 255 << 8)
    # 255 << 8 tells to fill with the value 255)
    mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
    fr_diff[mask>0] = 0

    #fr_diff = cv2.dilate(cv2.erode(fr_diff, element), element)

    if count % 2: # odd: is photo without the flash
        fr_mask = cv2.cvtColor(cv2.imread(fl_).astype(np.uint8), cv2.COLOR_BGR2GRAY)
        fr_not = np.bitwise_not(fr_mask)
        fr_shadow = np.bitwise_and(fr_diff, fr_not).astype(np.uint8)
        fr_fg = np.bitwise_or(fr_diff, fr_mask).astype(np.uint8)
        cv2.imwrite(fl_, fr_mask)
        
        m = cv2.inRange(fr, np.array([240,240,240]), np.array([255,255,255]))
        fr[m>0] = (239,239,239)
        m = cv2.inRange(fr, np.array([0,0,0]), np.array([15,15,15]))
        fr[m>0] = (16,16,16)
        fr[fr_shadow>0] = (fr[fr_shadow>0] / 17).astype(np.uint8)
        #fr[fr_fg==0] = (255,255,255)

        fr_fg[fr_fg>0] = 3 #probable fg
        mask, bgdModel, fgdModel = cv2.grabCut(fr, fr_fg, None,None,None,65, cv2.GC_INIT_WITH_MASK)
        mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
        #fr[mask==0] = (255,255,255)
        
        cv2.imwrite(fl, fr)

        #b = 3
        #d = 15
        element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
        mask_e = cv2.erode(mask, element) * 255
        element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d))
        mask_d = cv2.dilate(mask, element) * 127
        mask_d[mask_e>0] = 255
        cv2.imwrite(f"{str(count)}_trimask.png", mask_d.astype(np.uint8))
        cutout(fl, f"{str(count)}_trimask.png",  f"{str(count)}_cutout.png")

        a_map = cv2.imread(f"{str(count)}_cutout.png", cv2.IMREAD_UNCHANGED).astype(np.uint8)
        B, G, R, A = cv2.split(a_map)
        alpha = A / 255
        alpha[A<255] = alpha[A<255] / 17
        R = (255 * (1 - alpha) + R * alpha).astype(np.uint8)
        G = (255 * (1 - alpha) + G * alpha).astype(np.uint8)
        B = (255 * (1 - alpha) + B * alpha).astype(np.uint8)
        fr = cv2.merge((B, G, R))

        cv2.imwrite(fl, fr)
        return fl
    else: # even: with the flash
        fl_ = fl.split(".")[0] + "_.png"
        cv2.imwrite(fl_, fr_diff.astype(np.uint8))
        return fl_

def denoise(fl):
    fr = cv2.imread(fl).astype(np.uint8)
    fr = cv2.medianBlur(cv2.fastNlMeansDenoisingColored(fr, None, 5,5,7,21), 3)
    cv2.imwrite(fl, fr)
    return fl

def sharpest(fl, i):
    break_vid = get_frames(fl, "vid_input_frame", "origin", i)

    frames = []
    blur_s = []
    for jdx, fr in enumerate(break_vid[0]):
        frames.append(cv2.imread(fr).astype(np.uint8))
        blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var())
        print(str(int(blur_s[jdx])))

    indx = np.argmax(blur_s)
    fl = break_vid[0][indx]

    n = 25
    half = int(n/2)
    if indx-half < 0:
        n = indx*2+1
    elif indx+half >= len(frames):
        n = (len(frames)-1-indx)*2+1
        
    #denoise
    frame = cv2.medianBlur(cv2.fastNlMeansDenoisingColoredMulti(
        srcImgs = frames,
        imgToDenoiseIndex = indx,
        temporalWindowSize = n,
        hColor = 5,
        templateWindowSize = 7,
        searchWindowSize = 21), 3)

    cv2.imwrite(fl, frame)
    print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl)
    return fl

def sortFiles(e):
    e = e.split('/')
    return e[len(e)-1]

def loadf(f, r_bg, mh, ms, md, lm, b, d):
    if f != None and f[0] != None:
        f.sort(key=sortFiles)
        fnew = []

        for i, fl in enumerate(f):
            ftype = fl.split('/')
            if ftype[len(ftype)-1].split('.')[1] == 'mp4':
                fl = sharpest(fl, i)
            else:
                fl = denoise(fl)

            if r_bg == True:
                fl = remove_bg(fl, i, mh, ms, md, lm, b, d)
                if i % 2: # odd: is photo without the flash
                    fnew.append(fl)
            else:
                fnew.append(fl)
                
        return fnew, fnew
    else:
        return f, f


title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            margin-bottom: 10px;
        "
        >
        <h1 style="font-weight: 600; margin-bottom: 7px;">
            Video interpolation from images with FILM
        </h1>
        
        </div>
       <p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video for stop motion animation. 
       If .mp4 videos are uploaded instead, selects the sharpest frame of each. Limited to 300 uploaded frames, from the beginning of input.<br />
       <a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> 
       </p>
    </div>
"""

with gr.Blocks() as demo:
    with gr.Column():
        gr.HTML(title)
        with gr.Row():
            with gr.Column():
                with gr.Accordion(label="Upload files here", open=True):
                    files_orig = gr.File(file_count="multiple", file_types=['image', '.mp4'])
                    files_input = gr.File(file_count="multiple", visible=False)
                gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False)
                with gr.Group():
                    r_bg = gr.Checkbox(label="Remove background", value=True)
                    with gr.Accordion(label="Max differences for background", open=False):
                        mh = gr.Slider(minimum=0, maximum=180, step=1, value=180, label="Hue")
                        ms = gr.Slider(minimum=0, maximum=255, step=1, value=255, label="Saturation")
                        md = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Lightness")
                        lm = gr.Radio(label="Use max diffs from", choices=["average", "median", "slider"], value="slider")
                        with gr.Tab("Border"):
                            b_size = gr.Slider(minimum=1, maximum=255, step=2, value=3, label="Inner")
                            d_size = gr.Slider(minimum=1, maximum=255, step=2, value=15, label="Outer")
                files_orig.upload(fn=loadf, inputs=[files_orig, r_bg, mh, ms, md, lm, b_size, d_size], outputs=[files_input, gallery_input])
                
                with gr.Row():
                    interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ")
                    interpolation = gr.Number(value=1, show_label=False, interactive=False)
                    interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation])
                with gr.Row():
                    fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ")
                    fps_output = gr.Number(value=1, show_label=False, interactive=False)
                    fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output])
                submit_btn = gr.Button("Submit")
            
            with gr.Column():
                video_output = gr.Video()
                file_output = gr.File()
    
    gr.Examples(
        examples=[[
            ["./examples/0.png", "./examples/1.png", "./examples/2.png", "./examples/3.png", "./examples/4.png"], False, 0, 0, 0, "slider", 1, 1
        ], [
            ["./examples/0_flash.jpg", "./examples/1_noflash.jpg", "./examples/2_flash.jpg", "./examples/3_noflash.jpg"], True, 180, 255, 12, "slider", 3, 15
        ]],
        fn=loadf,
        inputs=[files_orig, r_bg, mh, ms, md, lm, b_size, d_size],
        outputs=[files_input, gallery_input],
        cache_examples=True
    )
    
    submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output])

demo.launch()