File size: 5,504 Bytes
7c27268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d2686
 
 
 
de5bd2a
02d2686
de5bd2a
48d0430
7c27268
1afd902
7c27268
 
 
 
7b2d4b2
719f503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2d4b2
7c27268
719f503
 
7c27268
 
 
187c6c8
7c27268
e9f2ce6
7c27268
6ceac94
7c27268
 
 
719f503
 
 
0b6c6a0
 
719f503
 
 
 
 
 
 
7c27268
 
 
b624482
 
7c27268
 
 
 
 
 
187c6c8
7c27268
 
 
 
187c6c8
7c27268
 
 
 
 
 
0b6c6a0
 
 
7c27268
0b6c6a0
 
 
7c27268
719f503
7c27268
719f503
0b6c6a0
7c27268
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from depth_anything_v2.dpt import DepthAnythingV2

css = """
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vitl'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()


def findNormals(gray_depth, format):

    d_im = cv2.cvtColor(cv2.imread(gray_depth).astype(np.uint8), cv2.COLOR_BGR2GRAY)
    zy, zx = np.gradient(d_im)  
    # You may also consider using Sobel to get a joint Gaussian smoothing and differentation
    # to reduce noise
    #zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)     
    #zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)

    if format == "opengl":
        zy = -zy
        
    normal = np.dstack((np.ones_like(d_im), -zy, -zx))
    n = np.linalg.norm(normal, axis=2)
    normal[:, :, 0] /= n
    normal[:, :, 1] /= n
    normal[:, :, 2] /= n

    # offset and rescale values to be in 0-255
    normal += 1
    normal /= 2
    normal *= 255

    return (normal[:, :, ::-1]).astype(np.uint8)


title = "# Depth Anything V2"
description = """Unofficial demo for **Depth Anything V2**.
Please refer to their [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""

@spaces.GPU
def predict_depth(image):
    return model.infer_image(image)

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Depth Prediction demo")

    with gr.Row():
        input_image = gr.ImageEditor(label="Input Image", layers=True, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=1, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="img-display-input")
        with gr.Tab("Depth"):
            depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
            orig_image_file = gr.File(label="Original image", elem_id="original")
            gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download")
            submit = gr.Button(value="Compute Depth")
        with gr.Tab("Normals"):
            normals_out = gr.Image(label="Normal map", interactive=False)
            format_normals = gr.Radio(choices=["directx", "opengl"])
            find_normals = gr.Button("Find normals")
            find_normals.click(fn=findNormals, inputs=[gray_depth_file, format_normals], outputs=[normals_out])
    
    raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
    cmap = matplotlib.colormaps.get_cmap('Spectral_r')

    def on_submit(img_d):
        image = cv2.cvtColor(img_d["composite"], cv2.COLOR_RGBA2RGB)
        original_image = image.copy()

        h, w = image.shape[:2]

        depth = predict_depth(image[:, :, ::-1])

        raw_depth = Image.fromarray(depth.astype('uint16'))
        tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        raw_depth.save(tmp_raw_depth.name)

        depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
        depth = depth.astype(np.uint8)
        colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)

        gray_depth = Image.fromarray(depth)
        tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        gray_depth.save(tmp_gray_depth.name)

        orig_image = Image.fromarray(image)
        tmp_orig_image = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        orig_image.save(tmp_orig_image.name)

        return [(original_image, colored_depth), tmp_orig_image.name, tmp_gray_depth.name, tmp_raw_depth.name]

    submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, orig_image_file, gray_depth_file, raw_file])

    example_files = os.listdir('assets/drawn_examples')
    example_files.sort()
    example_files = [os.path.join('assets/drawn_examples', filename) for filename in example_files]
    examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, orig_image_file, gray_depth_file, raw_file], fn=on_submit)


if __name__ == '__main__':
    demo.queue().launch(share=True)