Spaces:
Runtime error
Runtime error
fracapuano
commited on
Commit
•
d5bd88b
1
Parent(s):
60017a4
add: greenlights to showcase widgets
Browse files
qa/qa.py
CHANGED
@@ -49,6 +49,8 @@ def qa_main():
|
|
49 |
index = None
|
50 |
doc = None
|
51 |
|
|
|
|
|
52 |
# OpenAI API Key - TODO: consider adding a key valid for everyone
|
53 |
st.header("Configure OpenAI API Key")
|
54 |
st.warning('Please enter your OpenAI API Key!', icon='⚠️')
|
@@ -62,59 +64,80 @@ def qa_main():
|
|
62 |
if user_secret:
|
63 |
if set_openai_api_key(user_secret):
|
64 |
st.success('OpenAI API key successfully provided!', icon='✅')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
on_change=clear_submit,
|
73 |
-
accept_multiple_files=multiple_files,
|
74 |
-
)
|
75 |
|
76 |
-
|
77 |
-
if uploaded_file is not None:
|
78 |
-
# toggle internal file submission state to True
|
79 |
-
st.session_state["file_submitted"] = True
|
80 |
-
# parse the file using custom parsers
|
81 |
-
doc = file_to_doc(uploaded_file)
|
82 |
-
# converts the files into a list of documents
|
83 |
-
text = text_to_docs(text=tuple(doc))
|
84 |
-
|
85 |
-
try:
|
86 |
-
with st.spinner("Indexing the document... This might take a while!"):
|
87 |
-
index = embed_docs(tuple(text))
|
88 |
-
st.session_state["api_key_configured"] = True
|
89 |
-
except OpenAIError as e:
|
90 |
-
st.error("OpenAI error encountered: ", e._message)
|
91 |
-
|
92 |
-
if "messages" not in st.session_state:
|
93 |
-
st.session_state["messages"] = []
|
94 |
-
|
95 |
-
for message in st.session_state.messages:
|
96 |
-
with st.chat_message(message["role"]):
|
97 |
-
st.markdown(message["content"])
|
98 |
-
|
99 |
-
if prompt := st.chat_input("Ask the document something..."):
|
100 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
101 |
-
with st.chat_message("user"):
|
102 |
-
st.markdown(prompt)
|
103 |
-
|
104 |
-
with st.chat_message("assistant"):
|
105 |
-
message_placeholder = st.empty()
|
106 |
-
# retrieving the most relevant sources
|
107 |
-
sources = search_docs(index, prompt)
|
108 |
-
# producing the answer, live
|
109 |
-
full_response = ""
|
110 |
-
for answer_bit in get_answer(sources, prompt)["output_text"]:
|
111 |
-
full_response += answer_bit
|
112 |
-
message_placeholder.markdown(full_response + "▌")
|
113 |
-
|
114 |
-
message_placeholder.markdown(full_response)
|
115 |
-
# answer = get_answer(sources, prompt)
|
116 |
-
# message_placeholder.markdown(answer["output_text"])
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
49 |
index = None
|
50 |
doc = None
|
51 |
|
52 |
+
upload_document_greenlight = False
|
53 |
+
uploaded_processed_document_greenlight = False
|
54 |
# OpenAI API Key - TODO: consider adding a key valid for everyone
|
55 |
st.header("Configure OpenAI API Key")
|
56 |
st.warning('Please enter your OpenAI API Key!', icon='⚠️')
|
|
|
64 |
if user_secret:
|
65 |
if set_openai_api_key(user_secret):
|
66 |
st.success('OpenAI API key successfully provided!', icon='✅')
|
67 |
+
upload_document_greenlight = True
|
68 |
+
|
69 |
+
if upload_document_greenlight:
|
70 |
+
# File that needs to be queried
|
71 |
+
st.header("Upload a file")
|
72 |
+
uploaded_file = st.file_uploader(
|
73 |
+
"Upload a pdf, docx, or txt file (scanned documents not supported)",
|
74 |
+
type=["pdf", "docx", "txt", "py", "json", "html", "css", "md"],
|
75 |
+
help="Scanned documents are not supported yet 🥲",
|
76 |
+
on_change=clear_submit,
|
77 |
+
accept_multiple_files=multiple_files,
|
78 |
+
)
|
79 |
+
|
80 |
+
# reading the uploaded file
|
81 |
+
if uploaded_file is not None:
|
82 |
+
# toggle internal file submission state to True
|
83 |
+
st.session_state["file_submitted"] = True
|
84 |
+
# parse the file using custom parsers
|
85 |
+
doc = file_to_doc(uploaded_file)
|
86 |
+
# converts the files into a list of documents
|
87 |
+
text = text_to_docs(text=tuple(doc))
|
88 |
|
89 |
+
try:
|
90 |
+
with st.spinner("Indexing the document... This might take a while!"):
|
91 |
+
index = embed_docs(tuple(text))
|
92 |
+
st.session_state["api_key_configured"] = True
|
93 |
+
except OpenAIError as e:
|
94 |
+
st.error("OpenAI error encountered: ", e._message)
|
|
|
|
|
|
|
95 |
|
96 |
+
uploaded_processed_document_greenlight = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
if uploaded_processed_document_greenlight:
|
99 |
+
if "messages" not in st.session_state:
|
100 |
+
st.session_state["messages"] = []
|
101 |
+
|
102 |
+
for message in st.session_state.messages:
|
103 |
+
with st.chat_message(message["role"]):
|
104 |
+
st.markdown(message["content"])
|
105 |
+
|
106 |
+
if prompt := st.chat_input("Ask the document something..."):
|
107 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
108 |
+
with st.chat_message("user"):
|
109 |
+
st.markdown(prompt)
|
110 |
+
|
111 |
+
with st.chat_message("assistant"):
|
112 |
+
message_placeholder = st.empty()
|
113 |
+
# retrieving the most relevant sources
|
114 |
+
sources = search_docs(index, prompt)
|
115 |
+
# producing the answer, live
|
116 |
+
full_response = ""
|
117 |
+
for answer_bit in get_answer(sources, prompt)["output_text"]:
|
118 |
+
full_response += answer_bit
|
119 |
+
message_placeholder.markdown(full_response + "▌")
|
120 |
+
|
121 |
+
message_placeholder.markdown(full_response)
|
122 |
+
|
123 |
+
# answer = get_answer(sources, prompt)
|
124 |
+
# message_placeholder.markdown(answer["output_text"])
|
125 |
+
|
126 |
+
# st.session_state.messages.append({"role": "assistant", "content": answer["output_text"]})
|
127 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
128 |
+
|
129 |
+
# This might be useful to add memory to the chatbot harnessing a more low-level approach
|
130 |
+
# llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
|
131 |
+
|
132 |
+
# memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
133 |
+
# retriever = your_vector_store.as_retriever()
|
134 |
+
|
135 |
+
# # Create the multipurpose chain
|
136 |
+
# qachat = ConversationalRetrievalChain.from_llm(
|
137 |
+
# llm=ChatOpenAI(temperature=0),
|
138 |
+
# memory=memory,
|
139 |
+
# retriever=retriever,
|
140 |
+
# return_source_documents=True
|
141 |
+
# )
|
142 |
|
143 |
+
# qachat("Ask your question here...")
|