#!/usr/bin/env python # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is import spaces import os import random import uuid import gradio as gr import numpy as np from PIL import Image import torch from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler from transformers import CLIPTextModelWithProjection, CLIPTextModel from typing import Tuple import paramiko import datetime from gradio import themes from image_gen_aux import UpscaleWithModel from ip_adapter import IPAdapterXL from huggingface_hub import snapshot_download torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False #torch.backends.cuda.preferred_blas_library="cublas" # torch.backends.cuda.preferred_linalg_library="cusolver" torch.set_float32_matmul_precision("highest") os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1") os.environ["SAFETENSORS_FAST_GPU"] = "1" FTP_HOST = "1ink.us" FTP_USER = "ford442" FTP_PASS = os.getenv("FTP_PASS") FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server DESCRIPTIONXX = """ ## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 IP Adapter ⚡⚡⚡⚡ """ examples = [ "Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw", "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw", ] MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) device = torch.device("cuda:0") style_list = [ { "name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "Style Zero", "prompt": "{prompt}", "negative_prompt": "", }, ] styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} DEFAULT_STYLE_NAME = "Style Zero" STYLE_NAMES = list(styles.keys()) HF_TOKEN = os.getenv("HF_TOKEN") ## load IP Adapter repo_id = "ford442/SDXL-IP_ADAPTER" subfolder = "image_encoder" subfolder2 = "ip_adapter" local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model") local_folder = os.path.join(local_repo_path, subfolder) local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0")) def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: if style_name in styles: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) else: p, n = styles[DEFAULT_STYLE_NAME] if not negative: negative = "" return p.replace("{prompt}", positive), n + negative def load_and_prepare_model(): #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None) vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16) pipe = StableDiffusionXLPipeline.from_pretrained( 'ford442/RealVisXL_V5.0_BF16', #'ford442/Juggernaut-XI-v11-fp32', # 'SG161222/RealVisXL_V5.0', #'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl', #torch_dtype=torch.bfloat16, add_watermarker=False, # custom_pipeline="lpw_stable_diffusion_xl", #use_safetensors=True, token=HF_TOKEN, text_encoder=None, text_encoder_2=None, vae=None, ) pipe.vae=vaeX pipe.to(device=device, dtype=torch.bfloat16) pipe.vae.set_default_attn_processor() print(f'Pipeline: ') print(f'image_processor: {pipe.image_processor}') print(f'init noise scale: {pipe.scheduler.init_noise_sigma}') pipe.watermark=None pipe.safety_checker=None return pipe # Preload and compile both models pipe = load_and_prepare_model() ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device) text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True).to(device=device, dtype=torch.bfloat16) text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16) MAX_SEED = np.iinfo(np.int32).max neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' " def upload_to_ftp(filename): try: transport = paramiko.Transport((FTP_HOST, 22)) destination_path=FTP_DIR+filename transport.connect(username = FTP_USER, password = FTP_PASS) sftp = paramiko.SFTPClient.from_transport(transport) sftp.put(filename, destination_path) sftp.close() transport.close() print(f"Uploaded {filename} to FTP server") except Exception as e: print(f"FTP upload error: {e}") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name,optimize=False,compress_level=0) return unique_name def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp): filename= f'IP_{timestamp}.txt' with open(filename, "w") as f: f.write(f"Realvis 5.0 IP Adapter \n") f.write(f"Date/time: {timestamp} \n") f.write(f"Prompt: {prompt} \n") f.write(f"Steps: {num_inference_steps} \n") f.write(f"Guidance Scale: {guidance_scale} \n") f.write(f"SPACE SETUP: \n") f.write(f"Use Model Dtype: no \n") f.write(f"Model Scheduler: Euler_a all_custom before cuda \n") f.write(f"Model VAE: sdxl-vae to bfloat safetensor=false before cuda then attn_proc / scale factor 8 \n") f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n") upload_to_ftp(filename) def display_image(file): if file is not None: return Image.open(file.name) else: return None @spaces.GPU(duration=40) def generate_30( prompt: str = "", negative_prompt: str = "", use_negative_prompt: bool = False, style_selection: str = "", width: int = 768, height: int = 768, guidance_scale: float = 4, num_inference_steps: int = 125, latent_file = gr.File(), # Add latents file input latent_file_2 = gr.File(), # Add latents file input latent_file_3 = gr.File(), # Add latents file input latent_file_4 = gr.File(), # Add latents file input latent_file_5 = gr.File(), # Add latents file input text_scale: float = 1.0, ip_scale: float = 1.0, latent_file_1_scale: float = 1.0, latent_file_2_scale: float = 1.0, latent_file_3_scale: float = 1.0, latent_file_4_scale: float = 1.0, latent_file_5_scale: float = 1.0, samples=1, progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument ): pipe.text_encoder=text_encoder pipe.text_encoder_2=text_encoder_2 seed = random.randint(0, MAX_SEED) generator = torch.Generator(device='cuda').manual_seed(seed) if latent_file is not None: # Check if a latent file is provided sd_image_a = Image.open(latent_file.name).convert('RGB') sd_image_a.resize((height,width), Image.LANCZOS) if latent_file_2 is not None: # Check if a latent file is provided sd_image_b = Image.open(latent_file_2.name).convert('RGB') sd_image_b.resize((height,width), Image.LANCZOS) else: sd_image_b = None if latent_file_3 is not None: # Check if a latent file is provided sd_image_c = Image.open(latent_file_3.name).convert('RGB') sd_image_c.resize((height,width), Image.LANCZOS) else: sd_image_c = None if latent_file_4 is not None: # Check if a latent file is provided sd_image_d = Image.open(latent_file_4.name).convert('RGB') sd_image_d.resize((height,width), Image.LANCZOS) else: sd_image_d = None if latent_file_5 is not None: # Check if a latent file is provided sd_image_e = Image.open(latent_file_5.name).convert('RGB') sd_image_e.resize((height,width), Image.LANCZOS) else: sd_image_e = None timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") filename= f'rv_IP_{timestamp}.png' print("-- using image file --") print('-- generating image --') sd_image = ip_model.generate( pil_image_1=sd_image_a, pil_image_2=sd_image_b, pil_image_3=sd_image_c, pil_image_4=sd_image_d, pil_image_5=sd_image_e, prompt=prompt, negative_prompt=negative_prompt, text_scale=text_scale, ip_scale=ip_scale, scale_1=latent_file_1_scale, scale_2=latent_file_2_scale, scale_3=latent_file_3_scale, scale_4=latent_file_4_scale, scale_5=latent_file_5_scale, num_samples=samples, seed=seed, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, ) sd_image[0].save(filename,optimize=False,compress_level=0) upload_to_ftp(filename) uploadNote(prompt,num_inference_steps,guidance_scale,timestamp) torch.set_float32_matmul_precision("medium") with torch.no_grad(): upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256) downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS) downscale_path = f"rvIP_upscale_{timestamp}.png" downscale1.save(downscale_path,optimize=False,compress_level=0) upload_to_ftp(downscale_path) image_paths = [save_image(downscale1)] else: print('-- IMAGE REQUIRED --') return image_paths @spaces.GPU(duration=70) def generate_60( prompt: str = "", negative_prompt: str = "", use_negative_prompt: bool = False, style_selection: str = "", width: int = 768, height: int = 768, guidance_scale: float = 4, num_inference_steps: int = 125, latent_file = gr.File(), # Add latents file input latent_file_2 = gr.File(), # Add latents file input latent_file_3 = gr.File(), # Add latents file input latent_file_4 = gr.File(), # Add latents file input latent_file_5 = gr.File(), # Add latents file input text_scale: float = 1.0, ip_scale: float = 1.0, latent_file_1_scale: float = 1.0, latent_file_2_scale: float = 1.0, latent_file_3_scale: float = 1.0, latent_file_4_scale: float = 1.0, latent_file_5_scale: float = 1.0, samples=1, progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument ): pipe.text_encoder=text_encoder pipe.text_encoder_2=text_encoder_2 seed = random.randint(0, MAX_SEED) generator = torch.Generator(device='cuda').manual_seed(seed) if latent_file is not None: # Check if a latent file is provided sd_image_a = Image.open(latent_file.name) if latent_file_2 is not None: # Check if a latent file is provided sd_image_b = Image.open(latent_file_2.name) sd_image_b.resize((height,width), Image.LANCZOS) else: sd_image_b = None if latent_file_3 is not None: # Check if a latent file is provided sd_image_c = Image.open(latent_file_3.name) sd_image_c.resize((height,width), Image.LANCZOS) else: sd_image_c = None if latent_file_4 is not None: # Check if a latent file is provided sd_image_d = Image.open(latent_file_4.name) sd_image_d.resize((height,width), Image.LANCZOS) else: sd_image_d = None if latent_file_5 is not None: # Check if a latent file is provided sd_image_e = Image.open(latent_file_5.name) sd_image_e.resize((height,width), Image.LANCZOS) else: sd_image_e = None timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") filename= f'rv_IP_{timestamp}.png' print("-- using image file --") print('-- generating image --') sd_image = ip_model.generate( pil_image_1=sd_image_a, pil_image_2=sd_image_b, pil_image_3=sd_image_c, pil_image_4=sd_image_d, pil_image_5=sd_image_e, prompt=prompt, negative_prompt=negative_prompt, text_scale=text_scale, ip_scale=ip_scale, scale_1=latent_file_1_scale, scale_2=latent_file_2_scale, scale_3=latent_file_3_scale, scale_4=latent_file_4_scale, scale_5=latent_file_5_scale, num_samples=samples, seed=seed, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, ) sd_image[0].save(filename,optimize=False,compress_level=0) upload_to_ftp(filename) uploadNote(prompt,num_inference_steps,guidance_scale,timestamp) torch.set_float32_matmul_precision("medium") with torch.no_grad(): upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256) downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS) downscale_path = f"rvIP_upscale_{timestamp}.png" downscale1.save(downscale_path,optimize=False,compress_level=0) upload_to_ftp(downscale_path) image_paths = [save_image(downscale1)] else: print('-- IMAGE REQUIRED --') return image_paths @spaces.GPU(duration=100) def generate_90( prompt: str = "", negative_prompt: str = "", use_negative_prompt: bool = False, style_selection: str = "", width: int = 768, height: int = 768, guidance_scale: float = 4, num_inference_steps: int = 125, latent_file = gr.File(), # Add latents file input latent_file_2 = gr.File(), # Add latents file input latent_file_3 = gr.File(), # Add latents file input latent_file_4 = gr.File(), # Add latents file input latent_file_5 = gr.File(), # Add latents file input text_scale: float = 1.0, ip_scale: float = 1.0, latent_file_1_scale: float = 1.0, latent_file_2_scale: float = 1.0, latent_file_3_scale: float = 1.0, latent_file_4_scale: float = 1.0, latent_file_5_scale: float = 1.0, samples=1, progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument ): pipe.text_encoder=text_encoder pipe.text_encoder_2=text_encoder_2 seed = random.randint(0, MAX_SEED) generator = torch.Generator(device='cuda').manual_seed(seed) if latent_file is not None: # Check if a latent file is provided sd_image_a = Image.open(latent_file.name) if latent_file_2 is not None: # Check if a latent file is provided sd_image_b = Image.open(latent_file_2.name) sd_image_b.resize((height,width), Image.LANCZOS) else: sd_image_b = None if latent_file_3 is not None: # Check if a latent file is provided sd_image_c = Image.open(latent_file_3.name) sd_image_c.resize((height,width), Image.LANCZOS) else: sd_image_c = None if latent_file_4 is not None: # Check if a latent file is provided sd_image_d = Image.open(latent_file_4.name) sd_image_d.resize((height,width), Image.LANCZOS) else: sd_image_d = None if latent_file_5 is not None: # Check if a latent file is provided sd_image_e = Image.open(latent_file_5.name) sd_image_e.resize((height,width), Image.LANCZOS) else: sd_image_e = None timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") filename= f'rv_IP_{timestamp}.png' print("-- using image file --") print('-- generating image --') #with torch.no_grad(): sd_image = ip_model.generate( pil_image_1=sd_image_a, pil_image_2=sd_image_b, pil_image_3=sd_image_c, pil_image_4=sd_image_d, pil_image_5=sd_image_e, prompt=prompt, negative_prompt=negative_prompt, text_scale=text_scale, ip_scale=ip_scale, scale_1=latent_file_1_scale, scale_2=latent_file_2_scale, scale_3=latent_file_3_scale, scale_4=latent_file_4_scale, scale_5=latent_file_5_scale, num_samples=samples, seed=seed, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, ) sd_image[0].save(filename,optimize=False,compress_level=0) upload_to_ftp(filename) uploadNote(prompt,num_inference_steps,guidance_scale,timestamp) torch.set_float32_matmul_precision("medium") with torch.no_grad(): upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256) downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS) downscale_path = f"rvIP_upscale_{timestamp}.png" downscale1.save(downscale_path,optimize=False,compress_level=0) upload_to_ftp(downscale_path) image_paths = [save_image(downscale1)] else: print('-- IMAGE REQUIRED --') return image_paths def load_predefined_images1(): predefined_images1 = [ "assets/7.png", "assets/8.png", "assets/9.png", "assets/1.png", "assets/2.png", "assets/3.png", "assets/4.png", "assets/5.png", "assets/6.png", ] return predefined_images1 css = ''' #col-container { margin: 0 auto; max-width: 640px; } h1{text-align:center} footer { visibility: hidden } body { background-color: green; } ''' with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo: gr.Markdown(DESCRIPTIONXX) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) text_strength = gr.Slider( label="Text Strength", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) run_button_30 = gr.Button("Run 30 Seconds", scale=0) run_button_60 = gr.Button("Run 60 Seconds", scale=0) run_button_90 = gr.Button("Run 90 Seconds", scale=0) result = gr.Gallery(label="Result", columns=1, show_label=False) ip_strength = gr.Slider( label="Image Strength", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) with gr.Row(): with gr.Column(): latent_file = gr.File(label="Image Prompt (Required)", file_types=["image"]) latent_file_preview = gr.Image(label="Image Prompt Preview", interactive=False) file_1_strength = gr.Slider( label="Img 1 %", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) with gr.Column(): latent_file_2 = gr.File(label="Image Prompt 2 (Optional)", file_types=["image"]) latent_file_2_preview = gr.Image(label="Image Prompt 2 Preview", interactive=False) file_2_strength = gr.Slider( label="Img 2 %", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) with gr.Column(): latent_file_3 = gr.File(label="Image Prompt 3 (Optional)", file_types=["image"]) latent_file_3_preview = gr.Image(label="Image Prompt 3 Preview", interactive=False) file_3_strength = gr.Slider( label="Img 3 %", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) with gr.Column(): latent_file_4 = gr.File(label="Image Prompt 4 (Optional)", file_types=["image"]) latent_file_4_preview = gr.Image(label="Image Prompt 4 Preview", interactive=False) file_4_strength = gr.Slider( label="Img 4 %", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) with gr.Column(): latent_file_5 = gr.File(label="Image Prompt 5 (Optional)", file_types=["image"]) latent_file_5_preview = gr.Image(label="Image Prompt 5 Preview", interactive=False) file_5_strength = gr.Slider( label="Img 5 %", minimum=0.0, maximum=16.0, step=0.01, value=1.0, ) style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style", ) with gr.Row(): with gr.Column(scale=1): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'", visible=True, ) samples = gr.Slider( label="Samples", minimum=0, maximum=20, step=1, value=1, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=448, maximum=MAX_IMAGE_SIZE, step=64, value=768, ) height = gr.Slider( label="Height", minimum=448, maximum=MAX_IMAGE_SIZE, step=64, value=768, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=30, step=0.1, value=3.8, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=1000, step=10, value=170, ) gr.Examples( examples=examples, inputs=prompt, cache_examples=False ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) latent_file.change( display_image, inputs=[latent_file], outputs=[latent_file_preview] ) latent_file_2.change( display_image, inputs=[latent_file_2], outputs=[latent_file_2_preview] ) latent_file_3.change( display_image, inputs=[latent_file_3], outputs=[latent_file_3_preview] ) latent_file_4.change( display_image, inputs=[latent_file_4], outputs=[latent_file_4_preview] ) latent_file_5.change( display_image, inputs=[latent_file_5], outputs=[latent_file_5_preview] ) gr.on( triggers=[ run_button_30.click, ], # api_name="generate", # Add this line fn=generate_30, inputs=[ prompt, negative_prompt, use_negative_prompt, style_selection, width, height, guidance_scale, num_inference_steps, latent_file, latent_file_2, latent_file_3, latent_file_4, latent_file_5, text_strength, ip_strength, file_1_strength, file_2_strength, file_3_strength, file_4_strength, file_5_strength, samples, ], outputs=[result], ) gr.on( triggers=[ run_button_60.click, ], # api_name="generate", # Add this line fn=generate_60, inputs=[ prompt, negative_prompt, use_negative_prompt, style_selection, width, height, guidance_scale, num_inference_steps, latent_file, latent_file_2, latent_file_3, latent_file_4, latent_file_5, text_strength, ip_strength, file_1_strength, file_2_strength, file_3_strength, file_4_strength, file_5_strength, samples, ], outputs=[result], ) gr.on( triggers=[ run_button_90.click, ], # api_name="generate", # Add this line fn=generate_90, inputs=[ prompt, negative_prompt, use_negative_prompt, style_selection, width, height, guidance_scale, num_inference_steps, latent_file, latent_file_2, latent_file_3, latent_file_4, latent_file_5, text_strength, ip_strength, file_1_strength, file_2_strength, file_3_strength, file_4_strength, file_5_strength, samples, ], outputs=[result], ) gr.Markdown("### REALVISXL V5.0") predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1()) #gr.Markdown("### LIGHTNING V5.0") #predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images()) gr.Markdown( """