import gradio as gr from transformers import pipeline from huggingface_hub import hf_api from huggingface_hub import DatasetFilter, ModelFilter api = hf_api.HfApi() flyswot_models = ModelFilter(author="flyswot") models = api.list_models(filter=flyswot_models) models = [model.modelId for model in models] choices = gr.inputs.Dropdown(choices=models, default='flyswot/convnext-tiny-224_flyswot',label="Model") def predict(image,model): pipe = pipeline("image-classification", model=model) predictions = pipe(image, top_k=20) return {pred['label']: pred['score'] for pred in predictions} iface = gr.Interface( fn=predict, inputs=[gr.inputs.Image(type='filepath'),choices], outputs='label', interpretation='shap') iface.launch(enable_queue=True)