Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,206 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
from groq import Groq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import faiss
|
7 |
from PyPDF2 import PdfReader
|
8 |
from docx import Document
|
9 |
-
from transformers import pipeline
|
10 |
|
11 |
# Initialize Sentence Transformer for embeddings
|
12 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
13 |
-
|
14 |
# Vector Store (FAISS)
|
15 |
dimension = 384 # Embedding size
|
16 |
index = faiss.IndexFlatL2(dimension)
|
@@ -52,10 +242,11 @@ def chunk_text(text, chunk_size=500, overlap=50):
|
|
52 |
# Function to create embeddings and populate FAISS index
|
53 |
def create_embeddings_and_store(chunks):
|
54 |
global index
|
|
|
55 |
index = faiss.IndexFlatL2(dimension)
|
56 |
for chunk in chunks:
|
57 |
embedding = model.encode([chunk])
|
58 |
-
embedding = embedding.astype('float32')
|
59 |
index.add(embedding)
|
60 |
|
61 |
# Function for summarizing the text before sending
|
@@ -64,9 +255,9 @@ def summarize_text(text):
|
|
64 |
return summary[0]['summary_text']
|
65 |
|
66 |
# Function to dynamically truncate context to fit the Groq API's token limit
|
67 |
-
def truncate_context(context, max_tokens=4000):
|
68 |
if len(context) > max_tokens:
|
69 |
-
context = context[:max_tokens]
|
70 |
return context
|
71 |
|
72 |
# Function to query Groq with context and question
|
@@ -77,9 +268,11 @@ def query_groq(question, context):
|
|
77 |
if not context.strip():
|
78 |
return "Error: No context available from the uploaded documents."
|
79 |
|
80 |
-
|
|
|
81 |
context = truncate_context(context, max_tokens=max_context_tokens)
|
82 |
|
|
|
83 |
chat_completion = client.chat.completions.create(
|
84 |
messages=[{"role": "system", "content": "You are a helpful assistant. Use the context provided to answer the question."},
|
85 |
{"role": "assistant", "content": context},
|
@@ -98,21 +291,27 @@ def rag_pipeline(files, question, summarize_before_sending=False):
|
|
98 |
if not files:
|
99 |
return "Error: No files uploaded. Please upload at least one document."
|
100 |
|
|
|
101 |
texts = process_files(files)
|
102 |
if not texts:
|
103 |
return "Error: Could not extract text from the uploaded files."
|
104 |
|
|
|
105 |
combined_text = " ".join(texts)
|
106 |
|
107 |
if summarize_before_sending:
|
|
|
108 |
combined_text = summarize_text(combined_text)
|
109 |
|
110 |
-
|
|
|
111 |
combined_text = truncate_context(combined_text, max_tokens=max_text_size)
|
112 |
|
|
|
113 |
chunks = chunk_text(combined_text)
|
114 |
create_embeddings_and_store(chunks)
|
115 |
|
|
|
116 |
answer = query_groq(question, combined_text)
|
117 |
return answer
|
118 |
except Exception as e:
|
@@ -174,17 +373,22 @@ with gr.Blocks() as app:
|
|
174 |
value=False
|
175 |
)
|
176 |
|
177 |
-
# Output text box
|
178 |
output = gr.Textbox(
|
179 |
label="Answer from LLM",
|
180 |
interactive=False,
|
181 |
lines=4,
|
182 |
max_lines=6
|
183 |
)
|
184 |
-
|
185 |
-
# Submit button
|
186 |
submit_button = gr.Button("Submit", icon="send")
|
187 |
|
|
|
|
|
|
|
|
|
|
|
188 |
# Apply the logic for the button to trigger the RAG pipeline
|
189 |
submit_button.click(rag_pipeline, inputs=[file_input, question_input, summarize_before_input], outputs=output)
|
190 |
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import os
|
3 |
from groq import Groq
|
4 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
# from sentence_transformers import SentenceTransformer
|
6 |
+
# import faiss
|
7 |
+
# from PyPDF2 import PdfReader
|
8 |
+
# from docx import Document
|
9 |
+
# from transformers import pipeline
|
10 |
+
|
11 |
+
# # Initialize Sentence Transformer for embeddings
|
12 |
+
# model = SentenceTransformer('all-MiniLM-L6-v2')
|
13 |
+
client = Groq(api_key=os.getenv("groq_api_key"))
|
14 |
+
# # Vector Store (FAISS)
|
15 |
+
# dimension = 384 # Embedding size
|
16 |
+
# index = faiss.IndexFlatL2(dimension)
|
17 |
+
|
18 |
+
# # Initialize Hugging Face summarization model
|
19 |
+
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
20 |
+
|
21 |
+
# # Function to extract text from PDFs
|
22 |
+
# def extract_text_from_pdf(file_path):
|
23 |
+
# reader = PdfReader(file_path)
|
24 |
+
# text = ""
|
25 |
+
# for page in reader.pages:
|
26 |
+
# text += page.extract_text()
|
27 |
+
# return text
|
28 |
+
|
29 |
+
# # Function to extract text from DOCX
|
30 |
+
# def extract_text_from_docx(file_path):
|
31 |
+
# doc = Document(file_path)
|
32 |
+
# text = ""
|
33 |
+
# for paragraph in doc.paragraphs:
|
34 |
+
# text += paragraph.text + "\n"
|
35 |
+
# return text
|
36 |
+
|
37 |
+
# # Function to process files
|
38 |
+
# def process_files(files):
|
39 |
+
# texts = []
|
40 |
+
# for file in files:
|
41 |
+
# if file.name.endswith('.pdf'):
|
42 |
+
# texts.append(extract_text_from_pdf(file.name))
|
43 |
+
# elif file.name.endswith('.docx'):
|
44 |
+
# texts.append(extract_text_from_docx(file.name))
|
45 |
+
# return texts
|
46 |
+
|
47 |
+
# # Function to tokenize and chunk text
|
48 |
+
# def chunk_text(text, chunk_size=500, overlap=50):
|
49 |
+
# text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
50 |
+
# return text_splitter.split_text(text)
|
51 |
+
|
52 |
+
# # Function to create embeddings and populate FAISS index
|
53 |
+
# def create_embeddings_and_store(chunks):
|
54 |
+
# global index
|
55 |
+
# index = faiss.IndexFlatL2(dimension)
|
56 |
+
# for chunk in chunks:
|
57 |
+
# embedding = model.encode([chunk])
|
58 |
+
# embedding = embedding.astype('float32')
|
59 |
+
# index.add(embedding)
|
60 |
+
|
61 |
+
# # Function for summarizing the text before sending
|
62 |
+
# def summarize_text(text):
|
63 |
+
# summary = summarizer(text, max_length=300, min_length=100, do_sample=False)
|
64 |
+
# return summary[0]['summary_text']
|
65 |
+
|
66 |
+
# # Function to dynamically truncate context to fit the Groq API's token limit
|
67 |
+
# def truncate_context(context, max_tokens=4000):
|
68 |
+
# if len(context) > max_tokens:
|
69 |
+
# context = context[:max_tokens]
|
70 |
+
# return context
|
71 |
+
|
72 |
+
# # Function to query Groq with context and question
|
73 |
+
# def query_groq(question, context):
|
74 |
+
# try:
|
75 |
+
# if not question.strip():
|
76 |
+
# return "Error: Question is empty or invalid."
|
77 |
+
# if not context.strip():
|
78 |
+
# return "Error: No context available from the uploaded documents."
|
79 |
+
|
80 |
+
# max_context_tokens = 4000
|
81 |
+
# context = truncate_context(context, max_tokens=max_context_tokens)
|
82 |
+
|
83 |
+
# chat_completion = client.chat.completions.create(
|
84 |
+
# messages=[{"role": "system", "content": "You are a helpful assistant. Use the context provided to answer the question."},
|
85 |
+
# {"role": "assistant", "content": context},
|
86 |
+
# {"role": "user", "content": question}],
|
87 |
+
# model="llama3-8b-8192", stream=False)
|
88 |
+
# if chat_completion and chat_completion.choices:
|
89 |
+
# return chat_completion.choices[0].message.content
|
90 |
+
# else:
|
91 |
+
# return "Error: Received an unexpected response from Groq API."
|
92 |
+
# except Exception as e:
|
93 |
+
# return f"Error: {str(e)}"
|
94 |
+
|
95 |
+
# # Function to handle RAG pipeline
|
96 |
+
# def rag_pipeline(files, question, summarize_before_sending=False):
|
97 |
+
# try:
|
98 |
+
# if not files:
|
99 |
+
# return "Error: No files uploaded. Please upload at least one document."
|
100 |
+
|
101 |
+
# texts = process_files(files)
|
102 |
+
# if not texts:
|
103 |
+
# return "Error: Could not extract text from the uploaded files."
|
104 |
+
|
105 |
+
# combined_text = " ".join(texts)
|
106 |
+
|
107 |
+
# if summarize_before_sending:
|
108 |
+
# combined_text = summarize_text(combined_text)
|
109 |
+
|
110 |
+
# max_text_size = 4000
|
111 |
+
# combined_text = truncate_context(combined_text, max_tokens=max_text_size)
|
112 |
+
|
113 |
+
# chunks = chunk_text(combined_text)
|
114 |
+
# create_embeddings_and_store(chunks)
|
115 |
+
|
116 |
+
# answer = query_groq(question, combined_text)
|
117 |
+
# return answer
|
118 |
+
# except Exception as e:
|
119 |
+
# return f"Error: {str(e)}"
|
120 |
+
|
121 |
+
# # Enhanced UI with modern and clean style
|
122 |
+
# with gr.Blocks() as app:
|
123 |
+
# with gr.Row():
|
124 |
+
# # Left Column for instructions
|
125 |
+
# with gr.Column(scale=1, min_width=250):
|
126 |
+
# gr.Markdown("""
|
127 |
+
# <div style="background: linear-gradient(145deg, #6e7dff, #1c2b58); padding: 30px; border-radius: 12px; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1); font-family: 'Roboto', sans-serif;">
|
128 |
+
# <h2 style="color: #fff; font-size: 32px; font-weight: bold;">DocAI: Document Assistant</h2>
|
129 |
+
# <p style="color: #ddd; font-size: 18px;">Welcome to DocAI! Upload your documents and get intelligent answers based on their content.</p>
|
130 |
+
# <p style="color: #ddd; font-size: 16px; line-height: 1.6;"><strong>Steps to use:</strong></p>
|
131 |
+
# <ul style="color: #ddd; font-size: 16px; line-height: 1.6;">
|
132 |
+
# <li>Upload your PDF or DOCX files.</li>
|
133 |
+
# <li>Ask questions related to the document.</li>
|
134 |
+
# <li>Enable "Summarize Before Sending" for a brief summary of the document.</li>
|
135 |
+
# <li>Click "Submit" to get your answers.</li>
|
136 |
+
# </ul>
|
137 |
+
# <p style="color: #ddd; font-size: 16px; line-height: 1.6;">Upload multiple files and get answers based on their contents.</p>
|
138 |
+
# </div>
|
139 |
+
# """)
|
140 |
+
|
141 |
+
# # Right Column for the main application content
|
142 |
+
# with gr.Column(scale=2, min_width=600):
|
143 |
+
# gr.Markdown("""
|
144 |
+
# <div style="background: linear-gradient(135deg, #6e7dff, #1c2b58); padding: 20px; border-radius: 15px; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2); font-family: 'Roboto', sans-serif;">
|
145 |
+
# <h2 style="color: #fff; font-size: 36px; font-weight: bold; text-align: center; letter-spacing: 2px; text-transform: uppercase;">
|
146 |
+
# Ask Your Document
|
147 |
+
# </h2>
|
148 |
+
# <p style="color: #ddd; font-size: 18px; text-align: center; line-height: 1.6;">
|
149 |
+
# Get intelligent answers based on the content of your uploaded documents. Just ask a question!
|
150 |
+
# </p>
|
151 |
+
# </div>
|
152 |
+
# """)
|
153 |
+
|
154 |
+
# # File input
|
155 |
+
# file_input = gr.File(
|
156 |
+
# label="Upload Documents (PDF/DOCX)",
|
157 |
+
# file_types=[".pdf", ".docx"],
|
158 |
+
# file_count="multiple",
|
159 |
+
# interactive=True
|
160 |
+
# )
|
161 |
+
|
162 |
+
# # Question input
|
163 |
+
# question_input = gr.Textbox(
|
164 |
+
# label="Ask a question",
|
165 |
+
# placeholder="Type your question here...",
|
166 |
+
# interactive=True,
|
167 |
+
# lines=2,
|
168 |
+
# max_lines=4
|
169 |
+
# )
|
170 |
+
|
171 |
+
# # Summarize before sending checkbox
|
172 |
+
# summarize_before_input = gr.Checkbox(
|
173 |
+
# label="Summarize Before Sending",
|
174 |
+
# value=False
|
175 |
+
# )
|
176 |
+
|
177 |
+
# # Output text box
|
178 |
+
# output = gr.Textbox(
|
179 |
+
# label="Answer from LLM",
|
180 |
+
# interactive=False,
|
181 |
+
# lines=4,
|
182 |
+
# max_lines=6
|
183 |
+
# )
|
184 |
+
|
185 |
+
# # Submit button
|
186 |
+
# submit_button = gr.Button("Submit", icon="send")
|
187 |
+
|
188 |
+
# # Apply the logic for the button to trigger the RAG pipeline
|
189 |
+
# submit_button.click(rag_pipeline, inputs=[file_input, question_input, summarize_before_input], outputs=output)
|
190 |
+
|
191 |
+
# # Launch the app
|
192 |
+
# app.launch()
|
193 |
+
import gradio as gr
|
194 |
from langchain.text_splitter import CharacterTextSplitter
|
195 |
from sentence_transformers import SentenceTransformer
|
196 |
import faiss
|
197 |
from PyPDF2 import PdfReader
|
198 |
from docx import Document
|
199 |
+
from transformers import pipeline # Hugging Face for summarization
|
200 |
|
201 |
# Initialize Sentence Transformer for embeddings
|
202 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
203 |
+
|
204 |
# Vector Store (FAISS)
|
205 |
dimension = 384 # Embedding size
|
206 |
index = faiss.IndexFlatL2(dimension)
|
|
|
242 |
# Function to create embeddings and populate FAISS index
|
243 |
def create_embeddings_and_store(chunks):
|
244 |
global index
|
245 |
+
# Reset the FAISS index before adding new embeddings
|
246 |
index = faiss.IndexFlatL2(dimension)
|
247 |
for chunk in chunks:
|
248 |
embedding = model.encode([chunk])
|
249 |
+
embedding = embedding.astype('float32') # Ensure embedding is in correct format
|
250 |
index.add(embedding)
|
251 |
|
252 |
# Function for summarizing the text before sending
|
|
|
255 |
return summary[0]['summary_text']
|
256 |
|
257 |
# Function to dynamically truncate context to fit the Groq API's token limit
|
258 |
+
def truncate_context(context, max_tokens=4000): # Adjust max_tokens based on Groq's limits
|
259 |
if len(context) > max_tokens:
|
260 |
+
context = context[:max_tokens] # Truncate context to fit within the token limit
|
261 |
return context
|
262 |
|
263 |
# Function to query Groq with context and question
|
|
|
268 |
if not context.strip():
|
269 |
return "Error: No context available from the uploaded documents."
|
270 |
|
271 |
+
# Dynamically truncate context to fit within the token limit
|
272 |
+
max_context_tokens = 4000 # Groq's token limit for context
|
273 |
context = truncate_context(context, max_tokens=max_context_tokens)
|
274 |
|
275 |
+
# Query Groq API with the truncated context
|
276 |
chat_completion = client.chat.completions.create(
|
277 |
messages=[{"role": "system", "content": "You are a helpful assistant. Use the context provided to answer the question."},
|
278 |
{"role": "assistant", "content": context},
|
|
|
291 |
if not files:
|
292 |
return "Error: No files uploaded. Please upload at least one document."
|
293 |
|
294 |
+
# Process uploaded files
|
295 |
texts = process_files(files)
|
296 |
if not texts:
|
297 |
return "Error: Could not extract text from the uploaded files."
|
298 |
|
299 |
+
# Combine all extracted text into a single context
|
300 |
combined_text = " ".join(texts)
|
301 |
|
302 |
if summarize_before_sending:
|
303 |
+
# Summarize the text to reduce token count
|
304 |
combined_text = summarize_text(combined_text)
|
305 |
|
306 |
+
# Ensure the combined text is within Groq's token limit
|
307 |
+
max_text_size = 4000 # Adjust based on Groq's token limits
|
308 |
combined_text = truncate_context(combined_text, max_tokens=max_text_size)
|
309 |
|
310 |
+
# Chunk and create embeddings
|
311 |
chunks = chunk_text(combined_text)
|
312 |
create_embeddings_and_store(chunks)
|
313 |
|
314 |
+
# Query Groq LLM with context and question
|
315 |
answer = query_groq(question, combined_text)
|
316 |
return answer
|
317 |
except Exception as e:
|
|
|
373 |
value=False
|
374 |
)
|
375 |
|
376 |
+
# Output text box with enhanced styling
|
377 |
output = gr.Textbox(
|
378 |
label="Answer from LLM",
|
379 |
interactive=False,
|
380 |
lines=4,
|
381 |
max_lines=6
|
382 |
)
|
383 |
+
|
384 |
+
# Submit button with icon and modern styling
|
385 |
submit_button = gr.Button("Submit", icon="send")
|
386 |
|
387 |
+
# Loading spinner
|
388 |
+
with gr.Row():
|
389 |
+
with gr.Column(scale=1, min_width=250):
|
390 |
+
gr.Markdown("<div style='font-size: 14px; color: #555;'>Your answer will appear here...</div>")
|
391 |
+
|
392 |
# Apply the logic for the button to trigger the RAG pipeline
|
393 |
submit_button.click(rag_pipeline, inputs=[file_input, question_input, summarize_before_input], outputs=output)
|
394 |
|