Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.text_splitter import CharacterTextSplitter
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import faiss
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from docx import Document
|
7 |
+
from transformers import pipeline # Hugging Face for summarization
|
8 |
+
|
9 |
+
# Initialize Sentence Transformer for embeddings
|
10 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
11 |
+
|
12 |
+
# Vector Store (FAISS)
|
13 |
+
dimension = 384 # Embedding size
|
14 |
+
index = faiss.IndexFlatL2(dimension)
|
15 |
+
|
16 |
+
# Initialize Hugging Face summarization model
|
17 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
18 |
+
|
19 |
+
# Function to extract text from PDFs
|
20 |
+
def extract_text_from_pdf(file_path):
|
21 |
+
reader = PdfReader(file_path)
|
22 |
+
text = ""
|
23 |
+
for page in reader.pages:
|
24 |
+
text += page.extract_text()
|
25 |
+
return text
|
26 |
+
|
27 |
+
# Function to extract text from DOCX
|
28 |
+
def extract_text_from_docx(file_path):
|
29 |
+
doc = Document(file_path)
|
30 |
+
text = ""
|
31 |
+
for paragraph in doc.paragraphs:
|
32 |
+
text += paragraph.text + "\n"
|
33 |
+
return text
|
34 |
+
|
35 |
+
# Function to process files
|
36 |
+
def process_files(files):
|
37 |
+
texts = []
|
38 |
+
for file in files:
|
39 |
+
if file.name.endswith('.pdf'):
|
40 |
+
texts.append(extract_text_from_pdf(file.name))
|
41 |
+
elif file.name.endswith('.docx'):
|
42 |
+
texts.append(extract_text_from_docx(file.name))
|
43 |
+
return texts
|
44 |
+
|
45 |
+
# Function to tokenize and chunk text
|
46 |
+
def chunk_text(text, chunk_size=500, overlap=50):
|
47 |
+
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
48 |
+
return text_splitter.split_text(text)
|
49 |
+
|
50 |
+
# Function to create embeddings and populate FAISS index
|
51 |
+
def create_embeddings_and_store(chunks):
|
52 |
+
global index
|
53 |
+
# Reset the FAISS index before adding new embeddings
|
54 |
+
index = faiss.IndexFlatL2(dimension)
|
55 |
+
for chunk in chunks:
|
56 |
+
embedding = model.encode([chunk])
|
57 |
+
embedding = embedding.astype('float32') # Ensure embedding is in correct format
|
58 |
+
index.add(embedding)
|
59 |
+
|
60 |
+
# Function for summarizing the text before sending
|
61 |
+
def summarize_text(text):
|
62 |
+
summary = summarizer(text, max_length=300, min_length=100, do_sample=False)
|
63 |
+
return summary[0]['summary_text']
|
64 |
+
|
65 |
+
# Function to dynamically truncate context to fit the Groq API's token limit
|
66 |
+
def truncate_context(context, max_tokens=4000): # Adjust max_tokens based on Groq's limits
|
67 |
+
if len(context) > max_tokens:
|
68 |
+
context = context[:max_tokens] # Truncate context to fit within the token limit
|
69 |
+
return context
|
70 |
+
|
71 |
+
# Function to query Groq with context and question
|
72 |
+
def query_groq(question, context):
|
73 |
+
try:
|
74 |
+
if not question.strip():
|
75 |
+
return "Error: Question is empty or invalid."
|
76 |
+
if not context.strip():
|
77 |
+
return "Error: No context available from the uploaded documents."
|
78 |
+
|
79 |
+
# Dynamically truncate context to fit within the token limit
|
80 |
+
max_context_tokens = 4000 # Groq's token limit for context
|
81 |
+
context = truncate_context(context, max_tokens=max_context_tokens)
|
82 |
+
|
83 |
+
# Query Groq API with the truncated context
|
84 |
+
chat_completion = client.chat.completions.create(
|
85 |
+
messages=[{"role": "system", "content": "You are a helpful assistant. Use the context provided to answer the question."},
|
86 |
+
{"role": "assistant", "content": context},
|
87 |
+
{"role": "user", "content": question}],
|
88 |
+
model="llama3-8b-8192", stream=False)
|
89 |
+
if chat_completion and chat_completion.choices:
|
90 |
+
return chat_completion.choices[0].message.content
|
91 |
+
else:
|
92 |
+
return "Error: Received an unexpected response from Groq API."
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error: {str(e)}"
|
95 |
+
|
96 |
+
# Function to handle RAG pipeline
|
97 |
+
def rag_pipeline(files, question, summarize_before_sending=False):
|
98 |
+
try:
|
99 |
+
if not files:
|
100 |
+
return "Error: No files uploaded. Please upload at least one document."
|
101 |
+
|
102 |
+
# Process uploaded files
|
103 |
+
texts = process_files(files)
|
104 |
+
if not texts:
|
105 |
+
return "Error: Could not extract text from the uploaded files."
|
106 |
+
|
107 |
+
# Combine all extracted text into a single context
|
108 |
+
combined_text = " ".join(texts)
|
109 |
+
|
110 |
+
if summarize_before_sending:
|
111 |
+
# Summarize the text to reduce token count
|
112 |
+
combined_text = summarize_text(combined_text)
|
113 |
+
|
114 |
+
# Ensure the combined text is within Groq's token limit
|
115 |
+
max_text_size = 4000 # Adjust based on Groq's token limits
|
116 |
+
combined_text = truncate_context(combined_text, max_tokens=max_text_size)
|
117 |
+
|
118 |
+
# Chunk and create embeddings
|
119 |
+
chunks = chunk_text(combined_text)
|
120 |
+
create_embeddings_and_store(chunks)
|
121 |
+
|
122 |
+
# Query Groq LLM with context and question
|
123 |
+
answer = query_groq(question, combined_text)
|
124 |
+
return answer
|
125 |
+
except Exception as e:
|
126 |
+
return f"Error: {str(e)}"
|
127 |
+
|
128 |
+
# Enhanced UI with modern and clean style
|
129 |
+
with gr.Blocks() as app:
|
130 |
+
with gr.Row():
|
131 |
+
# Left Column for instructions
|
132 |
+
with gr.Column(scale=1, min_width=250):
|
133 |
+
gr.Markdown("""
|
134 |
+
<div style="background: linear-gradient(145deg, #6e7dff, #1c2b58); padding: 30px; border-radius: 12px; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1); font-family: 'Roboto', sans-serif;">
|
135 |
+
<h2 style="color: #fff; font-size: 32px; font-weight: bold;">DocAI: Document Assistant</h2>
|
136 |
+
<p style="color: #ddd; font-size: 18px;">Welcome to DocAI! Upload your documents and get intelligent answers based on their content.</p>
|
137 |
+
<p style="color: #ddd; font-size: 16px; line-height: 1.6;"><strong>Steps to use:</strong></p>
|
138 |
+
<ul style="color: #ddd; font-size: 16px; line-height: 1.6;">
|
139 |
+
<li>Upload your PDF or DOCX files.</li>
|
140 |
+
<li>Ask questions related to the document.</li>
|
141 |
+
<li>Enable "Summarize Before Sending" for a brief summary of the document.</li>
|
142 |
+
<li>Click "Submit" to get your answers.</li>
|
143 |
+
</ul>
|
144 |
+
<p style="color: #ddd; font-size: 16px; line-height: 1.6;">Upload multiple files and get answers based on their contents.</p>
|
145 |
+
</div>
|
146 |
+
""")
|
147 |
+
|
148 |
+
# Right Column for the main application content
|
149 |
+
with gr.Column(scale=2, min_width=600):
|
150 |
+
gr.Markdown("""
|
151 |
+
<div style="background: linear-gradient(135deg, #6e7dff, #1c2b58); padding: 20px; border-radius: 15px; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2); font-family: 'Roboto', sans-serif;">
|
152 |
+
<h2 style="color: #fff; font-size: 36px; font-weight: bold; text-align: center; letter-spacing: 2px; text-transform: uppercase;">
|
153 |
+
Ask Your Document
|
154 |
+
</h2>
|
155 |
+
<p style="color: #ddd; font-size: 18px; text-align: center; line-height: 1.6;">
|
156 |
+
Get intelligent answers based on the content of your uploaded documents. Just ask a question!
|
157 |
+
</p>
|
158 |
+
</div>
|
159 |
+
""")
|
160 |
+
|
161 |
+
# File input
|
162 |
+
file_input = gr.File(
|
163 |
+
label="Upload Documents (PDF/DOCX)",
|
164 |
+
file_types=[".pdf", ".docx"],
|
165 |
+
file_count="multiple",
|
166 |
+
interactive=True
|
167 |
+
)
|
168 |
+
|
169 |
+
# Question input
|
170 |
+
question_input = gr.Textbox(
|
171 |
+
label="Ask a question",
|
172 |
+
placeholder="Type your question here...",
|
173 |
+
interactive=True,
|
174 |
+
lines=2,
|
175 |
+
max_lines=4
|
176 |
+
)
|
177 |
+
|
178 |
+
# Summarize before sending checkbox
|
179 |
+
summarize_before_input = gr.Checkbox(
|
180 |
+
label="Summarize Before Sending",
|
181 |
+
value=False
|
182 |
+
)
|
183 |
+
|
184 |
+
# Output text box with enhanced styling
|
185 |
+
output = gr.Textbox(
|
186 |
+
label="Answer from LLM",
|
187 |
+
interactive=False,
|
188 |
+
lines=4,
|
189 |
+
max_lines=6
|
190 |
+
)
|
191 |
+
|
192 |
+
# Submit button with icon and modern styling
|
193 |
+
submit_button = gr.Button("Submit", icon="send")
|
194 |
+
|
195 |
+
# Loading spinner
|
196 |
+
with gr.Row():
|
197 |
+
with gr.Column(scale=1, min_width=250):
|
198 |
+
gr.Markdown("<div style='font-size: 14px; color: #555;'>Your answer will appear here...</div>")
|
199 |
+
|
200 |
+
# Apply the logic for the button to trigger the RAG pipeline
|
201 |
+
submit_button.click(rag_pipeline, inputs=[file_input, question_input, summarize_before_input], outputs=output)
|
202 |
+
|
203 |
+
# Launch the app
|
204 |
+
app.launch()
|