Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,192 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
-
from groq import Groq
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
import faiss
|
7 |
-
from PyPDF2 import PdfReader
|
8 |
-
from docx import Document
|
9 |
-
from transformers import pipeline
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
client = Groq(api_key=os.getenv("groq_api_key"))
|
14 |
-
# Vector Store (FAISS)
|
15 |
-
dimension = 384 # Embedding size
|
16 |
-
index = faiss.IndexFlatL2(dimension)
|
17 |
|
18 |
-
#
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# Function to extract text from PDFs
|
22 |
-
def extract_text_from_pdf(file_path):
|
23 |
-
reader = PdfReader(file_path)
|
24 |
-
text = ""
|
25 |
-
for page in reader.pages:
|
26 |
-
text += page.extract_text()
|
27 |
-
return text
|
28 |
-
|
29 |
-
# Function to extract text from DOCX
|
30 |
-
def extract_text_from_docx(file_path):
|
31 |
-
doc = Document(file_path)
|
32 |
-
text = ""
|
33 |
-
for paragraph in doc.paragraphs:
|
34 |
-
text += paragraph.text + "\n"
|
35 |
-
return text
|
36 |
-
|
37 |
-
# Function to process files
|
38 |
-
def process_files(files):
|
39 |
-
texts = []
|
40 |
-
for file in files:
|
41 |
-
if file.name.endswith('.pdf'):
|
42 |
-
texts.append(extract_text_from_pdf(file.name))
|
43 |
-
elif file.name.endswith('.docx'):
|
44 |
-
texts.append(extract_text_from_docx(file.name))
|
45 |
-
return texts
|
46 |
-
|
47 |
-
# Function to tokenize and chunk text
|
48 |
-
def chunk_text(text, chunk_size=500, overlap=50):
|
49 |
-
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
50 |
-
return text_splitter.split_text(text)
|
51 |
-
|
52 |
-
# Function to create embeddings and populate FAISS index
|
53 |
-
def create_embeddings_and_store(chunks):
|
54 |
-
global index
|
55 |
-
index = faiss.IndexFlatL2(dimension)
|
56 |
-
for chunk in chunks:
|
57 |
-
embedding = model.encode([chunk])
|
58 |
-
embedding = embedding.astype('float32')
|
59 |
-
index.add(embedding)
|
60 |
-
|
61 |
-
# Function for summarizing the text before sending
|
62 |
-
def summarize_text(text):
|
63 |
-
summary = summarizer(text, max_length=300, min_length=100, do_sample=False)
|
64 |
-
return summary[0]['summary_text']
|
65 |
-
|
66 |
-
# Function to dynamically truncate context to fit the Groq API's token limit
|
67 |
-
def truncate_context(context, max_tokens=4000):
|
68 |
-
if len(context) > max_tokens:
|
69 |
-
context = context[:max_tokens]
|
70 |
-
return context
|
71 |
-
|
72 |
-
# Function to query Groq with context and question
|
73 |
-
def query_groq(question, context):
|
74 |
-
try:
|
75 |
-
if not question.strip():
|
76 |
-
return "Error: Question is empty or invalid."
|
77 |
-
if not context.strip():
|
78 |
-
return "Error: No context available from the uploaded documents."
|
79 |
-
|
80 |
-
max_context_tokens = 4000
|
81 |
-
context = truncate_context(context, max_tokens=max_context_tokens)
|
82 |
-
|
83 |
-
chat_completion = client.chat.completions.create(
|
84 |
-
messages=[{"role": "system", "content": "You are a helpful assistant. Use the context provided to answer the question."},
|
85 |
-
{"role": "assistant", "content": context},
|
86 |
-
{"role": "user", "content": question}],
|
87 |
-
model="llama3-8b-8192", stream=False)
|
88 |
-
if chat_completion and chat_completion.choices:
|
89 |
-
return chat_completion.choices[0].message.content
|
90 |
-
else:
|
91 |
-
return "Error: Received an unexpected response from Groq API."
|
92 |
-
except Exception as e:
|
93 |
-
return f"Error: {str(e)}"
|
94 |
-
|
95 |
-
# Function to handle RAG pipeline
|
96 |
-
def rag_pipeline(files, question, summarize_before_sending=False):
|
97 |
-
try:
|
98 |
-
if not files:
|
99 |
-
return "Error: No files uploaded. Please upload at least one document."
|
100 |
-
|
101 |
-
texts = process_files(files)
|
102 |
-
if not texts:
|
103 |
-
return "Error: Could not extract text from the uploaded files."
|
104 |
-
|
105 |
-
combined_text = " ".join(texts)
|
106 |
-
|
107 |
-
if summarize_before_sending:
|
108 |
-
combined_text = summarize_text(combined_text)
|
109 |
-
|
110 |
-
max_text_size = 4000
|
111 |
-
combined_text = truncate_context(combined_text, max_tokens=max_text_size)
|
112 |
-
|
113 |
-
chunks = chunk_text(combined_text)
|
114 |
-
create_embeddings_and_store(chunks)
|
115 |
-
|
116 |
-
answer = query_groq(question, combined_text)
|
117 |
-
return answer
|
118 |
-
except Exception as e:
|
119 |
-
return f"Error: {str(e)}"
|
120 |
-
|
121 |
-
# Enhanced UI with modern and clean style
|
122 |
-
with gr.Blocks() as app:
|
123 |
with gr.Row():
|
124 |
-
|
125 |
-
|
126 |
-
gr.
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# File input
|
155 |
-
file_input = gr.File(
|
156 |
-
label="Upload Documents (PDF/DOCX)",
|
157 |
-
file_types=[".pdf", ".docx"],
|
158 |
-
file_count="multiple",
|
159 |
-
interactive=True
|
160 |
-
)
|
161 |
-
|
162 |
-
# Question input
|
163 |
-
question_input = gr.Textbox(
|
164 |
-
label="Ask a question",
|
165 |
-
placeholder="Type your question here...",
|
166 |
-
interactive=True,
|
167 |
-
lines=2,
|
168 |
-
max_lines=4
|
169 |
-
)
|
170 |
-
|
171 |
-
# Summarize before sending checkbox
|
172 |
-
summarize_before_input = gr.Checkbox(
|
173 |
-
label="Summarize Before Sending",
|
174 |
-
value=False
|
175 |
-
)
|
176 |
-
|
177 |
-
# Output text box
|
178 |
-
output = gr.Textbox(
|
179 |
-
label="Answer from LLM",
|
180 |
-
interactive=False,
|
181 |
-
lines=4,
|
182 |
-
max_lines=6
|
183 |
-
)
|
184 |
-
|
185 |
-
# Submit button
|
186 |
-
submit_button = gr.Button("Submit", icon="send")
|
187 |
-
|
188 |
-
# Apply the logic for the button to trigger the RAG pipeline
|
189 |
-
submit_button.click(rag_pipeline, inputs=[file_input, question_input], outputs=output)
|
190 |
-
|
191 |
-
# Launch the app
|
192 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def greet(name, intensity):
|
4 |
+
return f"Hello {name.upper()}!" * intensity
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo: # Use a built-in theme
|
7 |
+
gr.Markdown(
|
8 |
+
"""
|
9 |
+
# Welcome to My Colorful Gradio App! 👋
|
10 |
+
This is a simple example demonstrating how to create a visually appealing Gradio interface.
|
11 |
+
"""
|
12 |
+
)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
with gr.Row():
|
15 |
+
with gr.Column():
|
16 |
+
name = gr.Textbox(label="Enter your name", placeholder="Your name here")
|
17 |
+
intensity = gr.Slider(minimum=1, maximum=10, value=1, label="Intensity")
|
18 |
+
greet_btn = gr.Button("Greet Me!", variant="primary") # Use a primary button
|
19 |
+
|
20 |
+
with gr.Column():
|
21 |
+
output = gr.Textbox(label="Greeting Output", lines=4)
|
22 |
+
|
23 |
+
greet_btn.click(greet, inputs=[name, intensity], outputs=output)
|
24 |
+
|
25 |
+
gr.Examples(
|
26 |
+
examples=[
|
27 |
+
["John Doe", 3],
|
28 |
+
["Jane Smith", 1],
|
29 |
+
["A Very Long Name", 5],
|
30 |
+
],
|
31 |
+
inputs=[name, intensity],
|
32 |
+
outputs=output,
|
33 |
+
label="Try these examples:",
|
34 |
+
)
|
35 |
+
|
36 |
+
gr.Markdown(
|
37 |
+
"""
|
38 |
+
---
|
39 |
+
Created with ❤️ using Gradio.
|
40 |
+
"""
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|