import streamlit as st import numpy as np import jax import jax.numpy as jnp from PIL import Image from utils import load_model def app(model_name): model, processor = load_model(f"koclip/{model_name}") st.title("Zero-shot Image Classification") st.markdown( """ This demonstration explores capability of KoCLIP in the field of Zero-Shot Prediction. This demo takes a set of image and captions from, and predicts the most likely label among the different captions given. KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from [MSCOCO](https://cocodataset.org/#home) dataset and Korean caption annotations. Korean translation of caption annotations were obtained from [AI Hub](https://aihub.or.kr/keti_data_board/visual_intelligence). Base model `koclip` uses `klue/roberta` as text encoder and `openai/clip-vit-base-patch32` as image encoder. Larger model `koclip-large` uses `klue/roberta` as text encoder and bigger `google/vit-large-patch16-224` as image encoder. """ ) query = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) captions = st.text_input("사용하실 캡션을 쉼표 단위로 구분해서 적어주세요", value="고양이,강아지,느티나무...") if st.button("질문 (Query)"): if query is None: st.error("Please upload an image query.") else: image = Image.open(query) st.image(image) # pixel_values = processor( # text=[""], images=image, return_tensors="jax", padding=True # ).pixel_values # pixel_values = jnp.transpose(pixel_values, axes=[0, 2, 3, 1]) # vec = np.asarray(model.get_image_features(pixel_values)) captions = captions.split(",") inputs = processor(text=captions, images=image, return_tensors="jax", padding=True) inputs["pixel_values"] = jnp.transpose( inputs["pixel_values"], axes=[0, 2, 3, 1] ) outputs = model(**inputs) probs = jax.nn.softmax(outputs.logits_per_image, axis=1) for idx, prob in sorted(enumerate(*probs), key=lambda x: x[1], reverse=True): st.text(f"Score: `{prob}`, {captions[idx]}")