import jax import jax.numpy as jnp import numpy as np import pandas as pd import requests import streamlit as st from PIL import Image from utils import load_model def app(model_name): model, processor = load_model(f"koclip/{model_name}") st.title("Zero-shot Image Classification") st.markdown( """ This demonstration explores capability of KoCLIP in the field of Zero-Shot Prediction. This demo takes a set of image and captions from the user, and predicts the most likely label among the different captions given. KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from [MSCOCO](https://cocodataset.org/#home) dataset and Korean caption annotations. Korean translation of caption annotations were obtained from [AI Hub](https://aihub.or.kr/keti_data_board/visual_intelligence). Base model `koclip` uses `klue/roberta` as text encoder and `openai/clip-vit-base-patch32` as image encoder. Larger model `koclip-large` uses `klue/roberta` as text encoder and bigger `google/vit-large-patch16-224` as image encoder. """ ) query1 = st.text_input( "Enter a URL to an image...", value="http://images.cocodataset.org/val2017/000000039769.jpg", ) query2 = st.file_uploader("or upload an image...", type=["jpg", "jpeg", "png"]) col1, col2 = st.beta_columns([3, 1]) with col2: captions_count = st.selectbox( "Number of labels", options=range(1, 6), index=2 ) compute = st.button("Classify") with col1: captions = [] defaults = ["귀여운 고양이", "멋있는 강아지", "포동포동한 햄스터"] for idx in range(captions_count): value = defaults[idx] if idx < len(defaults) else "" captions.append(st.text_input(f"Insert label {idx+1}", value=value)) if compute: if not any([query1, query2]): st.error("Please upload an image or paste an image URL.") else: st.markdown("""---""") with st.spinner("Computing..."): image_data = ( query2 if query2 is not None else requests.get(query1, stream=True).raw ) image = Image.open(image_data) # captions = [caption.strip() for caption in captions.split(",")] captions = [f"이것은 {caption.strip()}이다." for caption in captions] inputs = processor( text=captions, images=image, return_tensors="jax", padding=True ) inputs["pixel_values"] = jnp.transpose( inputs["pixel_values"], axes=[0, 2, 3, 1] ) outputs = model(**inputs) probs = jax.nn.softmax(outputs.logits_per_image, axis=1) chart_data = pd.Series(probs[0], index=captions) col1, col2 = st.beta_columns(2) with col1: st.image(image) with col2: st.bar_chart(chart_data)