Spaces:
Build error
Build error
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
import pandas as pd | |
import requests | |
import streamlit as st | |
from PIL import Image | |
from utils import load_model | |
def app(model_name): | |
model, processor = load_model(f"koclip/{model_name}") | |
st.title("Zero-shot Image Classification") | |
st.markdown( | |
""" | |
This demonstration explores capability of KoCLIP in the field of Zero-Shot Prediction. This demo takes a set of image and captions from the user, and predicts the most likely label among the different captions given. | |
KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from [MSCOCO](https://cocodataset.org/#home) dataset and Korean caption annotations. Korean translation of caption annotations were obtained from [AI Hub](https://aihub.or.kr/keti_data_board/visual_intelligence). Base model `koclip` uses `klue/roberta` as text encoder and `openai/clip-vit-base-patch32` as image encoder. Larger model `koclip-large` uses `klue/roberta` as text encoder and bigger `google/vit-large-patch16-224` as image encoder. | |
""" | |
) | |
query1 = st.text_input( | |
"Enter a URL to an image...", | |
value="http://images.cocodataset.org/val2017/000000039769.jpg", | |
) | |
query2 = st.file_uploader("or upload an image...", type=["jpg", "jpeg", "png"]) | |
col1, col2 = st.beta_columns([3, 1]) | |
with col2: | |
captions_count = st.selectbox( | |
"Number of labels", options=range(1, 6), index=2 | |
) | |
compute = st.button("Classify") | |
with col1: | |
captions = [] | |
defaults = ["κ·μ¬μ΄ κ³ μμ΄", "λ©μλ κ°μμ§", "ν¬λν¬λν νμ€ν°"] | |
for idx in range(captions_count): | |
value = defaults[idx] if idx < len(defaults) else "" | |
captions.append(st.text_input(f"Insert label {idx+1}", value=value)) | |
if compute: | |
if not any([query1, query2]): | |
st.error("Please upload an image or paste an image URL.") | |
else: | |
st.markdown("""---""") | |
with st.spinner("Computing..."): | |
image_data = ( | |
query2 if query2 is not None else requests.get(query1, stream=True).raw | |
) | |
image = Image.open(image_data) | |
# captions = [caption.strip() for caption in captions.split(",")] | |
captions = [f"μ΄κ²μ {caption.strip()}μ΄λ€." for caption in captions] | |
inputs = processor( | |
text=captions, images=image, return_tensors="jax", padding=True | |
) | |
inputs["pixel_values"] = jnp.transpose( | |
inputs["pixel_values"], axes=[0, 2, 3, 1] | |
) | |
outputs = model(**inputs) | |
probs = jax.nn.softmax(outputs.logits_per_image, axis=1) | |
chart_data = pd.Series(probs[0], index=captions) | |
col1, col2 = st.beta_columns(2) | |
with col1: | |
st.image(image) | |
with col2: | |
st.bar_chart(chart_data) | |