File size: 1,526 Bytes
cf349fd
b22b27a
503acf7
 
f1d50b1
 
 
cf349fd
 
 
 
 
503acf7
cf349fd
503acf7
cf349fd
 
 
503acf7
cf349fd
503acf7
cf349fd
f1d50b1
 
0e0bacc
 
f1d50b1
 
 
 
503acf7
 
 
 
 
 
 
f1d50b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import nmslib
import streamlit as st
from transformers import CLIPProcessor, AutoTokenizer, ViTFeatureExtractor
import numpy as np

from koclip import FlaxHybridCLIP

@st.cache(allow_output_mutation=True)
def load_index(img_file):
    filenames, embeddings = [], []
    lines = open(img_file, "r")
    for line in lines:
        cols = line.strip().split('\t')
        filename = cols[0]
        embedding = np.array([float(x) for x in cols[1].split(',')])
        filenames.append(filename)
        embeddings.append(embedding)
    embeddings = np.array(embeddings)
    index = nmslib.init(method='hnsw', space='cosinesimil')
    index.addDataPointBatch(embeddings)
    index.createIndex({'post': 2}, print_progress=True)
    return filenames, index

@st.cache(allow_output_mutation=True)
def load_model(model_name="koclip/koclip-base"):
    assert model_name in {"koclip/koclip-base", "koclip/koclip-large"}
    model = FlaxHybridCLIP.from_pretrained(model_name)
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
    processor.tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large")
    if model_name == "koclip/koclip-large":
        processor.feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-large-patch16-224")
    return model, processor

@st.cache(allow_output_mutation=True)
def load_model_v2(model_name="koclip/koclip"):
    model = FlaxHybridCLIP.from_pretrained(model_name)
    processor = CLIPProcessor.from_pretrained(model_name)
    return model, processor