# Importing some modules import gradio as gr from transformers import pipeline import torch.cuda as cuda # Loading in the model MODEL = pipeline('image-classification', model='nateraw/vit-age-classifier', device=0 if cuda.is_available() else -1) # Main function to classify image def classify_image(image, top_k): # Getting the classification result classification_result = MODEL(image) # Reformating the classification result into a dictionary classification_result = {result['label']: result['score'] for result in classification_result[:int(top_k)]} # Add some text comment to it lol comment = text_comment(list(classification_result.keys())[0]) # Returning the classification result return classification_result, comment # Snarky comment based on age def text_comment(pred_class): match pred_class: case "3-9": return "Lost your way to the playground?" case "10-19": return "But Mom, I'm not a kid anymore!" case "20-29": return "You're in your prime!" case "30-39": return "Oof, watch out for those wrinkles!" case "40-49": return "You're still young at heart!" case "50-59": return "Retirement is just around the corner!" case "60-69": return "You're a senior citizen now!" case "more than 70": return "Hey Siri, play 'My Way' by Frank Sinatra" if __name__ == "__main__": # Creating the Gradio interface with gr.Blocks() as demo: gr.Markdown(""" # I will guess your age based on your picture! --- Totally not creepy, I promise :)
Made by [Dennis Jonathan](dennisjooo.github.io). A project for REA Mastering AI course. Age guessing model from [nateraw/vit-age-classifier](https://huggingface.co/nateraw/vit-age-classifier) """) with gr.Row(equal_height=True): with gr.Column(): # Creating the input block image = gr.Image(label="Upload a picture of yourself", type="pil", scale=2) # Creating the example block gr.Examples(examples=[ "./images/andrew.jpg", "./images/feifei.jpg", "./images/geoff.jpg", "./images/ilya.jpg", "./images/karpathy.jpg", "./images/lex.jpg" ], inputs=[image], label="Or choose an example") with gr.Column(): # Getting the top k hyperparameter top_k = gr.Number(label="How many guesses do I get?", value=1) # Creating the output block label = gr.Label(label="Hey it's me, your age!") comment = gr.Textbox(label="Based on your age, I think you are...", placeholder="I'm still learning, so I might be wrong!") with gr.Row(): # Submit button btn = gr.Button("Beep boop, guess my age!") btn.click(classify_image, inputs=[image, top_k], outputs=[label, comment]) # Clear button clear = gr.Button("Poof begone!") clear.click(lambda: [None, None, None], inputs=[], outputs=[image, label, comment]) # Launching the interface demo.launch(share=False, debug=True)