# source: huggingface: fashn-ai/sapiens-body-part-segmentation import colorsys import matplotlib.colors as mcolors import numpy as np from PIL import Image def get_palette(num_cls): palette = [0] * (256 * 3) palette[0:3] = [0, 0, 0] for j in range(1, num_cls): hue = (j - 1) / (num_cls - 1) saturation = 1.0 value = 1.0 if j % 2 == 0 else 0.5 rgb = colorsys.hsv_to_rgb(hue, saturation, value) r, g, b = [int(x * 255) for x in rgb] palette[j * 3 : j * 3 + 3] = [r, g, b] return palette def create_colormap(palette): colormap = np.array(palette).reshape(-1, 3) / 255.0 return mcolors.ListedColormap(colormap) def visualize_mask_with_overlay(img: Image.Image, mask: Image.Image, labels_to_ids: dict[str, int], alpha=0.5): img_np = np.array(img.convert("RGB")) mask_np = np.array(mask) num_cls = len(labels_to_ids) palette = get_palette(num_cls) colormap = create_colormap(palette) overlay = np.zeros((*mask_np.shape, 3), dtype=np.uint8) for label, idx in labels_to_ids.items(): if idx != 0: overlay[mask_np == idx] = np.array(colormap(idx)[:3]) * 255 blended = Image.fromarray(np.uint8(img_np * (1 - alpha) + overlay * alpha)) return blended def resize_image(pil_image, target_size): """ Resize a PIL image while maintaining its aspect ratio. Args: pil_image (PIL.Image): The input image. target_size (tuple): The target size as (width, height). Returns: PIL.Image: The resized image. """ original_width, original_height = pil_image.size target_width, target_height = target_size # Calculate aspect ratios aspect_ratio = original_width / original_height target_aspect = target_width / target_height if aspect_ratio > target_aspect: # Image is wider than target, scale based on width new_width = target_width new_height = int(new_width / aspect_ratio) else: # Image is taller than target, scale based on height new_height = target_height new_width = int(new_height * aspect_ratio) # Resize the image resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS) # Create a new image with the target size and paste the resized image new_image = Image.new('RGB', target_size, (0, 0, 0)) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 new_image.paste(resized_image, (paste_x, paste_y)) return new_image