import os os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") os.system("pip install imageio") os.system("pip install albumentations==0.5.2") os.system("pip install opencv-python") os.system("pip install ffmpeg-python") os.system("pip install moviepy") import cv2 import paddlehub as hub import gradio as gr import torch from PIL import Image, ImageOps import numpy as np import imageio from moviepy.editor import * os.mkdir("data") os.rename("best.ckpt", "models/best.ckpt") os.mkdir("dataout") def get_frames(video_in): frames = [] #resize the video clip = VideoFileClip(video_in) #check fps if clip.fps > 30: print("vide rate is over 30, resetting to 30") clip_resized = clip.resize(height=256) clip_resized.write_videofile("video_resized.mp4", fps=30) else: print("video rate is OK") clip_resized = clip.resize(height=256) clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) print("video resized to 512 height") # Opens the Video file with CV2 cap= cv2.VideoCapture("video_resized.mp4") fps = cap.get(cv2.CAP_PROP_FPS) print("video fps: " + str(fps)) i=0 while(cap.isOpened()): ret, frame = cap.read() if ret == False: break cv2.imwrite('kang'+str(i)+'.jpg',frame) frames.append('kang'+str(i)+'.jpg') i+=1 cap.release() cv2.destroyAllWindows() print("broke the video into frames") return frames, fps def create_video(frames, fps, type): print("building video result") clip = ImageSequenceClip(frames, fps=fps) clip.write_videofile(type + "_result.mp4", fps=fps) return type + "_result.mp4" def magic_lama(img): i = img img = Image.open(img) mask = Image.open("./masks/modelscope-mask.png") inverted_mask = ImageOps.invert(mask) imageio.imwrite(f"./data/data_{i}.png", img) imageio.imwrite(f"./data/data_mask_{i}.png", inverted_mask) os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') return f"./dataout/data_mask_{i}.png" def infer(video_in): # 1. break video into frames and get FPS break_vid = get_frames(video_in) frames_list= break_vid[0] fps = break_vid[1] #n_frame = int(trim_value*fps) n_frame = len(frames_list) if n_frame >= len(frames_list): print("video is shorter than the cut value") n_frame = len(frames_list) # 2. prepare frames result arrays result_frames = [] print("set stop frames to: " + str(n_frame)) for i in frames_list[0:int(n_frame)]: lama_frame = magic_lama(i) result_frames.append(lama_frame) print("frame " + i + "/" + str(n_frame) + ": done;") final_vid = create_video(result_frames, fps, "cleaned") files = [final_vid] return final_vid, files inputs = [gr.Image(label="Input", source="upload", type="filepath")] outputs = [gr.Video(label="output"), gr.Files(label="Download Video")] title = "LaMa Image Inpainting" description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net" article = "
Resolution-robust Large Mask Inpainting with Fourier Convolutions | Github Repo
" gr.Interface(infer, inputs, outputs, title=title, description=description, article=article).launch()