Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,354 Bytes
eaa9650 37c41a7 558b476 e53ff6c 558b476 282f3fe 558b476 282f3fe 558b476 fc9e96b 282f3fe eaa9650 d8389e8 37c41a7 3f6c118 b46eb2a 3f6c118 1b1621a 282f3fe 558b476 1b1621a 282f3fe 1b1621a 282f3fe 1b1621a 282f3fe 3f6c118 d8389e8 3f6c118 d8389e8 3f6c118 d8389e8 3f6c118 51d1244 3f6c118 d8389e8 3f6c118 d8389e8 3f6c118 d8389e8 3f6c118 d8389e8 3f6c118 37c41a7 eaa9650 b15e4f3 0c86bfd cdc2f90 0579504 cdc2f90 0c86bfd 7d01e69 e76ad14 7d01e69 0c86bfd 763f870 7d01e69 0c86bfd 13d267c 0579504 0c86bfd cdc2f90 dc229bf 0c86bfd 0579504 6782246 0579504 0c86bfd 0579504 0c86bfd 763f870 0c86bfd cdc2f90 d8389e8 cdc2f90 fe073ef cdc2f90 2e14e78 eaa9650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os
import re
from gradio_client import Client
import torch
from transformers import pipeline
pipe_safety = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
agent_maker_sys = os.environ.get("SAFETY_PROMPT")
instruction = f"""
<|system|>
{agent_maker_sys}</s>
<|user|>
"""
def safety_check(user_prompt):
prompt = f"{instruction.strip()}\n'{user_prompt}'</s>"
print(f"""
—
USER PROMPT: {user_prompt}
""")
outputs = pipe_safety(prompt, max_new_tokens=256, do_sample=True, temperature=0.3, top_k=50, top_p=0.95)
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
print(f"""
—
SAFETY COUNCIL: {cleaned_text}
""")
return cleaned_text.lstrip("\n")
is_shared_ui = True if "fffiloni/consistent-character" in os.environ['SPACE_ID'] else False
from utils.gradio_helpers import parse_outputs, process_outputs
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
print(f"""
—/n
{args[0]}
""")
if args[0] == '' or args[0] is None:
raise gr.Error(f"You forgot to provide a prompt.")
try:
if is_shared_ui:
is_safe = safety_check(args[0])
print(is_safe)
match = re.search(r'\bYes\b', is_safe)
if match:
status = 'Yes'
else:
status = None
else:
status = None
if status == "Yes" :
raise gr.Error("Do not ask for such things.")
else:
headers = {'Content-Type': 'application/json'}
payload = {"input": {}}
base_url = "http://0.0.0.0:7860"
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/gradio_api/file=" + value
if value is not None and value != "":
payload["input"][key] = value
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
#If the output component is JSON return the entire output response
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {response.status_code}")
except Exception as e:
# Handle any other type of error
raise gr.Error(f"An error occurred: {e}")
title = "Demo for consistent-character cog image by fofr"
description = "Create images of a given character in different poses • running cog image by fofr"
css="""
#col-container{
margin: 0 auto;
max-width: 1400px;
text-align: left;
}
"""
with gr.Blocks(css=css) as app:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Consistent Character Workflow")
gr.Markdown("### Create images of a given character in different poses • running cog image by fofr")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://huggingface.co/spaces/fffiloni/consistent-character?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<p> to skip the queue and use custom prompts
</div>
""")
with gr.Row():
with gr.Column(scale=2):
if is_shared_ui:
prompt = gr.Textbox(
label="Prompt", info='''Duplicate the space to you personal account for custom prompt''',
value="a person, darkblue suit, black tie, white pocket",
interactive=False
)
else:
prompt = gr.Textbox(
label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.''',
value="a person, darkblue suit, black tie, white pocket",
interactive=True
)
subject = gr.Image(
label="Subject", type="filepath"
)
submit_btn = gr.Button("Submit")
with gr.Accordion(label="Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt", info='''Things you do not want to see in your image''',
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
interactive=False if is_shared_ui else True
)
with gr.Row():
number_of_outputs = gr.Slider(
label="Number Of Outputs", info='''The number of images to generate.''', value=4,
minimum=1, maximum=4, step=1,
)
number_of_images_per_pose = gr.Slider(
label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1,
minimum=1, maximum=4, step=1,
)
with gr.Row():
randomise_poses = gr.Checkbox(
label="Randomise Poses", info='''Randomise the poses used.''', value=True
)
output_format = gr.Dropdown(
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp"
)
with gr.Row():
output_quality = gr.Number(
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80
)
seed = gr.Number(
label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None
)
with gr.Column(scale=3):
consistent_results = gr.Gallery(label="Consistent Results")
inputs = [prompt, negative_prompt, subject, number_of_outputs, number_of_images_per_pose, randomise_poses, output_format, output_quality, seed]
outputs = [consistent_results]
submit_btn.click(
fn = predict,
inputs = inputs,
outputs = outputs,
show_api = False
)
app.queue(max_size=12, api_open=False).launch(share=False, show_api=False, show_error=True)
|